Michael W Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3086658/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure of MCM-48 Revealed by Transmission Electron Microscopy. Chemistry of Materials, 1996, 8, 1141-1146.	6.7	260
2	Hierarchical Pore Structures through Diatom Zeolitization. Angewandte Chemie - International Edition, 2000, 39, 2707-2710.	13.8	215
3	Adsorption complexes of methanol on zeolite ZSM-5. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 3039.	1.7	205
4	Direct observation of shape selectivity in zeolite ZSM-5 by magic-angle-spinning NMR. Nature, 1989, 339, 200-203.	27.8	187
5	The acidity and catalytic activity of heteropoly acid on MCM-41 investigated by MAS NMR, FTIR and catalytic tests. Applied Catalysis A: General, 2000, 192, 57-69.	4.3	173
6	Solid-state NMR studies of the shape-selective catalytic conversion of methanol into gasoline on zeolite ZSM-5. Journal of the American Chemical Society, 1990, 112, 10-16.	13.7	157
7	Crystal Growth of the Nanoporous Metal–Organic Framework HKUSTâ€∎ Revealed by In Situ Atomic Force Microscopy. Angewandte Chemie - International Edition, 2008, 47, 8525-8528.	13.8	156
8	Growth of Quantum-Confined Indium Phosphide inside MCM-41. Journal of Physical Chemistry B, 1998, 102, 3345-3353.	2.6	148
9	One-Pot Synthesis of Hierarchically Ordered Porous-Silica Materials with Three Orders of Length Scale. Angewandte Chemie - International Edition, 2003, 42, 4649-4653.	13.8	146
10	Silicalite Crystal Growth Investigated by Atomic Force Microscopy. Journal of the American Chemical Society, 2003, 125, 830-839.	13.7	143
11	Revelation of the Molecular Assembly of the Nanoporous Metal Organic Framework ZIF-8. Journal of the American Chemical Society, 2011, 133, 13304-13307.	13.7	142
12	Synthesis and Structural Characterization of Microporous Umbite, Penkvilksite, and Other Titanosilicates. Journal of Physical Chemistry B, 1997, 101, 7114-7120.	2.6	134
13	Zeolites treated with silicon tetrachloride vapour. Part 1.—Preparation and characterisation. Journal of the Chemical Society Faraday Transactions I, 1986, 82, 1449.	1.0	124
14	Study of copper(2+)-doped zeolite NaH-ZSM-5 by electron spin resonance and electron spin echo modulation spectroscopies. The Journal of Physical Chemistry, 1987, 91, 4174-4179.	2.9	120
15	Crystallization in Zeolite A Studied by Atomic Force Microscopy. Journal of the American Chemical Society, 1998, 120, 10754-10759.	13.7	113
16	Zeolites treated with silicon tetrachloride vapour. IV. Acidity. Zeolites, 1986, 6, 455-466.	0.5	112
17	Direct Observation of Zeolite A Synthesis by in Situ Solid-State NMR. Chemistry of Materials, 1996, 8, 369-375.	6.7	110
18	Structural investigation of ETS-4. Zeolites, 1996, 16, 98-107.	0.5	105

#	Article	IF	CITATIONS
19	Crystal form, defects and growth of the metal organic framework HKUST-1 revealed by atomic force microscopy. CrystEngComm, 2008, 10, 646.	2.6	98
20	The Porosity, Acidity, and Reactivity of Dealuminated Zeolite ZSMâ€5 at the Single Particle Level: The Influence of the Zeolite Architecture. Chemistry - A European Journal, 2011, 17, 13773-13781.	3.3	94
21	Solid-State NMR Investigation of the Alkylation of Toluene with Methanol over Basic Zeolite X. Journal of the American Chemical Society, 1994, 116, 5774-5783.	13.7	91
22	Synthesis of microporous titanosilicate ETS-10 from TiCl3 and TiO2: a comprehensive study. Microporous and Mesoporous Materials, 1998, 23, 253-263.	4.4	90
23	Predicting crystal growth via a unified kinetic three-dimensional partition model. Nature, 2017, 544, 456-459.	27.8	88
24	14N NMR study of surfactant mesophases in the synthesis of mesoporous silicates. Journal of the Chemical Society Chemical Communications, 1994, , 1571.	2.0	87
25	Crystal Growth in Zeolite Y Revealed by Atomic Force Microscopy. Angewandte Chemie International Edition in English, 1996, 35, 1210-1213.	4.4	87
26	Proton magic-angle-spinning NMR studies of the adsorption of alcohols on molecular sieve catalysts. The Journal of Physical Chemistry, 1991, 95, 235-239.	2.9	86
27	29Si solid-state NMR study of mesoporous M41S materials. Chemistry of Materials, 1995, 7, 1829-1832.	6.7	78
28	Determination of the Structure of Distorted TiO6Units in the Titanosilicate ETS-10 by a Combination of X-ray Absorption Spectroscopy and Computer Modeling. The Journal of Physical Chemistry, 1996, 100, 449-452.	2.9	78
29	In situ solid-state NMR studies of the catalytic conversion of methanol on the molecular sieve SAPO-34. The Journal of Physical Chemistry, 1990, 94, 2730-2734.	2.9	75
30	Observation of spatially correlated intergrowths of faujasitic polytypes and the pure end members by high-resolution electron microscopy. Chemistry of Materials, 1993, 5, 452-458.	6.7	75
31	Crystal Growth Mechanisms and Morphological Control of the Prototypical Metal–Organic Framework MOFâ€5 Revealed by Atomic Force Microscopy. Chemistry - A European Journal, 2012, 18, 15406-15415.	3.3	75
32	Modern microscopy methods for the structural study of porous materials. Chemical Communications, 2004, , 907.	4.1	74
33	Intergrowths of cubic and hexagonal polytypes of faujasitic zeolites. Journal of the Chemical Society Chemical Communications, 1991, , 1660-1664.	2.0	73
34	The First Large-Pore Vanadosilicate Framework Containing Hexacoordinated Vanadium. Angewandte Chemie International Edition in English, 1997, 36, 100-102.	4.4	70
35	Aldol-Type Reactions over Basic Microporous Titanosilicate ETS-10 Type Catalysts. Journal of Catalysis, 2000, 189, 395-400.	6.2	70
36	Solid-State13C MAS NMR Study of Methanol-to-Hydrocarbon Chemistry over H-SAPO-34. Journal of Catalysis, 1996, 164, 301-314.	6.2	69

3

#	Article	IF	CITATIONS
37	Simplified description of MCM-48. Zeolites, 1997, 19, 220-227.	0.5	68
38	Recent progress in scanning electron microscopy for the characterization of fine structural details of nano materials. Progress in Solid State Chemistry, 2014, 42, 1-21.	7.2	66
39	Layered titanate pillared with alumina. Inorganic Chemistry, 1990, 29, 3260-3263.	4.0	64
40	Growth models in microporous materials. Microporous and Mesoporous Materials, 2001, 48, 1-9.	4.4	62
41	Cubosome Description of the Inorganic Mesoporous Structure MCM-48. Chemistry of Materials, 1997, 9, 2066-2070.	6.7	59
42	Probing the Acid Strength of BrÃ,nsted Acidic Zeolites with Acetonitrile:Â An Atomistic and Quantum Chemical Study. Journal of Physical Chemistry B, 2004, 108, 7152-7161.	2.6	58
43	Meso-cellular silica foams, macro-cellular silica foams and mesoporous solids: a study of emulsion-mediated synthesis. Microporous and Mesoporous Materials, 2005, 78, 255-263.	4.4	57
44	The strong basicity of the microporous titanosilicate ETS-10. Catalysis Letters, 1999, 57, 151-153.	2.6	56
45	Single layer growth of sub-micron metal–organic framework crystals observed by in situ atomic force microscopy. Chemical Communications, 2009, , 6294.	4.1	56
46	Textural, structural and acid properties of a catalytically active mesoporous aluminosilicate MCM-41. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 4623.	1.7	54
47	Macro-cellular silica foams: synthesis during the natural creaming process of an oil-in-water emulsion. Chemical Communications, 2003, , 2182.	4.1	52
48	Connectivity Analysis of the Clear Sol Precursor of Silicalite: Are Nanoparticles Aggregated Oligomers or Silica Particles?. Journal of Physical Chemistry C, 2009, 113, 20827-20836.	3.1	51
49	A Novel Method for the Growth of Silicalite Membranes on Stainless Steel Supports. Chemistry of Materials, 1999, 11, 3329-3332.	6.7	49
50	Fundamental Crystal Growth Mechanism in Zeolite L Revealed by Atomic Force Microscopy. Angewandte Chemie - International Edition, 2008, 47, 5327-5330.	13.8	49
51	Crystallisation of solvothermally synthesised ZIF-8 investigated at the bulk, single crystal and surface level. CrystEngComm, 2013, 15, 9672.	2.6	48
52	Synthesis and Structural Characterization of Microporous Framework Zirconium Silicates. Journal of Physical Chemistry B, 1999, 103, 957-963.	2.6	46
53	CHA/AEI intergrowth materials as catalysts for the Methanol-to-Olefins process. Applied Catalysis A: General, 2015, 505, 1-7.	4.3	46
54	Alumination of highly siliceous zeolites. Journal of the Chemical Society Chemical Communications, 1984, , 1596.	2.0	44

#	Article	IF	CITATIONS
55	Synthesis of self-supporting zeolite films. Journal of Materials Chemistry, 1992, 2, 255.	6.7	44
56	Synthesis and Structural Studies of Microporous Titaniumâ^'Niobiumâ^'Silicates with the Structure of Nenadkevichite. The Journal of Physical Chemistry, 1996, 100, 14978-14983.	2.9	44
57	A review of fine structures of nanoporous materials as evidenced by microscopic methods. Microscopy (Oxford, England), 2013, 62, 109-146.	1.5	44
58	Ab initio structure determination of layered sodium titanium silicate containing edge-sharing titanate chains (AM-4) Na3(Na,H)Ti2O2[Si2O6]·2.2H2O. Chemical Communications, 1997, , 2371-2372.	4.1	43
59	Cation sites in ETS-10: 23Na 3Q MAS NMR and lattice energy minimisation calculations. Physical Chemistry Chemical Physics, 1999, 1, 2287-2292.	2.8	43
60	The confinement of buckminsterfullerene in one-dimensional channels. Journal of the Chemical Society Chemical Communications, 1993, , 533.	2.0	42
61	Carbon-13 and proton magic-angle-spinning NMR studies of the conversion of methanol over offretite/erionite intergrowths. The Journal of Physical Chemistry, 1992, 96, 388-392.	2.9	40
62	Phase transformation of microporous titanosilicate ETS-4 into narsarsukite. Zeolites, 1996, 17, 437-443.	0.5	40
63	Fundamental Zeolite Crystal Growth Rates from Simulation of Atomic Force Micrographs J.R.A. gratefully acknowledges the EPSRC for Advanced Fellowship no AF/990985 and N.H. acknowledges financial support from the EPSRC Angewandte Chemie - International Edition, 2001, 40, 4065.	13.8	40
64	A high-resolution solid-state nuclear magnetic resonance study of the ordering of silicon and aluminium in synthetic mazzite (zeolite omega). Journal of the Chemical Society Faraday Transactions I, 1986, 82, 569.	1.0	39
65	Crystal growth in framework materials. Solid State Sciences, 2001, 3, 809-819.	3.2	39
66	A New Minimal Surface and the Structure of Mesoporous Silicas. Angewandte Chemie - International Edition, 2005, 44, 3243-3248.	13.8	39
67	Unstitching the Nanoscopic Mystery of Zeolite Crystal Formation. Journal of the American Chemical Society, 2010, 132, 13858-13868.	13.7	39
68	Controlling Relative Fundamental Crystal Growth Rates in Silicalite:  AFM Observation. Journal of the American Chemical Society, 2007, 129, 15192-15201.	13.7	38
69	Mesopore generation by organosilane surfactant during LTA zeolite crystallization, investigated by high-resolution SEM and Monte Carlo simulation. Solid State Sciences, 2011, 13, 750-756.	3.2	38
70	Dehydration of tâ€butanol over basic ETSâ€10, ETASâ€10 and AMâ€6 catalysts. Catalysis Letters, 1998, 53, 221	-2246	37
71	Nanoporous Intergrowths: How Crystal Growth Dictates Phase Composition and Hierarchical Structure in the CHA/AEI System. Chemistry of Materials, 2015, 27, 4205-4215.	6.7	37
72	Mesoporous Microspheres with Doubly Ordered Coreâ^'Shell Structure. Chemistry of Materials, 2009, 21, 18-20.	6.7	36

#	Article	IF	CITATIONS
73	Assessing Molecular Transport Properties of Nanoporous Materials by Interference Microscopy: Remarkable Effects of Composition and Microstructure on Diffusion in the Silicoaluminophosphate Zeotype STA-7. Journal of the American Chemical Society, 2010, 132, 11665-11670.	13.7	36
74	Monitoring organic products of catalytic reactions on zeolites by two-dimensional J-resolved solid-state NMR. Chemical Physics Letters, 1990, 172, 275-278.	2.6	35
75	n-Hexane Reforming Reactions over Basic Pt-ETS-10 and Pt-ETAS-10. Journal of Catalysis, 1998, 178, 174-181.	6.2	35
76	Probing the Acid Strength of BrÃ,nsted Acidic Zeolites with Acetonitrile:Â Quantum Chemical Calculation of1H,15N, and13C NMR Shift Parameters. Journal of Physical Chemistry B, 2004, 108, 7142-7151.	2.6	34
77	Synthesis and characterization of hierarchical porous materials incorporating a cubic mesoporous phase. Journal of Materials Chemistry, 2008, 18, 4985.	6.7	34
78	In situ atomic force microscopy of zeolite A dissolution. Physical Chemistry Chemical Physics, 2008, 10, 5066.	2.8	34
79	On the siting of aluminium in zeolite omega. Journal of the Chemical Society Chemical Communications, 1983, , 525.	2.0	30
80	Zeolites treated with silicon tetrachloride vapour. Part 2.—Sorption studies. Journal of the Chemical Society Faraday Transactions I, 1986, 82, 3569.	1.0	30
81	Dealumination of Hexagonal (EMT)/Cubic (FAU) Zeolite Intergrowth Materials: A SEM and HRTEM Study. Chemistry of Materials, 1994, 6, 2201-2204.	6.7	30
82	Solid-state NMR studies of adsorption complexes and surface methoxy groups on methanol-sorbed microporous materials. Journal of Catalysis, 1998, 177, 189-207.	6.2	30
83	The effect of stirring on the synthesis of intergrowths of zeolite Y polymorphs. Physical Chemistry Chemical Physics, 2000, 2, 3349-3357.	2.8	30
84	Teaching a Chemistry MOOC with a Virtual Laboratory: Lessons Learned from an Introductory Physical Chemistry Course. Journal of Chemical Education, 2015, 92, 1661-1666.	2.3	30
85	Observations on the role of crow nether templates in the formation of hexagonal and cubic polymorphs of zeolite Y. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1996, 452, 715-740.	2.1	29
86	Insight and Control of the Crystal Growth of Zeolitic Imidazolate Framework ZIF-67 by Atomic Force Microscopy and Mass Spectrometry. Crystal Growth and Design, 2018, 18, 695-700.	3.0	29
87	Synthesis and characterisation of a novel microporous niobium silicate catalyst. Chemical Communications, 1998, , 2687-2688.	4.1	28
88	Synthesis and characterisation of microporous titanoniobosilicate ETNbS-10. Chemical Communications, 1999, , 471-472.	4.1	28
89	Synthesis and Characterization of Two Novel Large-Pore Crystalline Vanadosilicates. Chemistry of Materials, 2002, 14, 1053-1057.	6.7	28
90	Growth Mechanism of Microporous Zincophosphate Sodalite Revealed by In Situ Atomic Force Microscopy. Journal of the American Chemical Society, 2012, 134, 13066-13073.	13.7	28

#	Article	IF	CITATIONS
91	Novel microporous titanium–niobium–silicates with the structure of nenadkevichite. Chemical Communications, 1996, , 669-670.	4.1	27
92	Theoretical Study of Toluene Adsorbed on Zeolites X and Y:  Calculation of 13C NMR Parameters. Journal of Physical Chemistry B, 2002, 106, 10944-10954.	2.6	26
93	Ga, Ti avoidance in the microporous titanogallosilicate ETGS-10. Journal of the Chemical Society Chemical Communications, 1995, , 867.	2.0	25
94	Surface microscopy of porous materials. Current Opinion in Solid State and Materials Science, 2001, 5, 407-415.	11.5	25
95	Dehydration of Alcohols by Microporous Niobium Silicate AM-11. Catalysis Letters, 2002, 80, 99-102.	2.6	25
96	In situ NMR and XRD studies of the growth mechanism of SBA-1. Physical Chemistry Chemical Physics, 2005, 7, 1845.	2.8	25
97	29Si NMR Relaxation of Silicated Nanoparticles in Tetraethoxysilaneâ~'Tetrapropylammonium Hydroxideâ~'Water System (TEOSâ~'TPAOHâ~'H2O). Journal of Physical Chemistry C, 2009, 113, 10838-10841.	3.1	25
98	Spiral Growth on Nanoporous Silicoaluminophosphate STA-7 as Observed by Atomic Force Microscopy. Crystal Growth and Design, 2009, 9, 4041-4050.	3.0	24
99	AFM and HRSEM Invesitigation of Zeolite A Crystal Growth. Part 1: In the Absence of Organic Additives. Journal of Physical Chemistry C, 2011, 115, 12567-12574.	3.1	24
100	Materials Discovery and Crystal Growth of Zeoliteâ€A Type Zeolitic–Imidazolate Frameworks Revealed by Atomic Force Microscopy. Chemistry - A European Journal, 2013, 19, 8236-8243.	3.3	24
101	Crystal growth of MOF-5 using secondary building units studied by in situ atomic force microscopy. CrystEngComm, 2014, 16, 9834-9841.	2.6	24
102	Use of Hammett indicators for the study of acidity of zeolite catalysts. Zeolites, 1986, 6, 150-153.	0.5	23
103	Assessment of the sphericalâ€everaging approximation for the interpretation of electron spinâ€echo modulation for cupric ion complexes. Journal of Chemical Physics, 1987, 87, 1-6.	3.0	23
104	Unified Internal Architecture and Surface Barriers for Molecular Diffusion of Microporous Crystalline Aluminophosphates. Angewandte Chemie - International Edition, 2010, 49, 6790-6794.	13.8	23
105	Evolution of the crystal growth mechanism of zeolite W (MER) with temperature. Microporous and Mesoporous Materials, 2019, 274, 379-384.	4.4	23
106	ON THE SIMILARITY OF THE HIGH-RESOLUTION SOLID-STATE29Si AND27Aİ SPECTRA OF SILICALITE AND DEALUMINATED ZEOLITE ZSM-5. Chemistry Letters, 1983, 12, 1555-1556.	1.3	22
107	Characterisation studies on the new microporous aluminium-containing ETS-10 molecular sieve used for processing larger molecules. Microporous Materials, 1997, 10, 211-224.	1.6	22
108	Crystal growth in nanoporous framework materials. Faraday Discussions, 2007, 136, 143.	3.2	22

7

#	Article	IF	CITATIONS
109	Evolution of Surface Morphology with Introduction of Stacking Faults in Zeolites. Chemistry - A European Journal, 2010, 16, 2220-2230.	3.3	22
110	Unveiling the mechanism of lattice-mismatched crystal growth of a core–shell metal–organic framework. Chemical Science, 2019, 10, 9571-9575.	7.4	22
111	Differentiating fundamental structural units during the dissolution of zeolite A. Chemical Communications, 2007, , 2473.	4.1	21
112	Modifying the Crystal Habit of Zeolite L by Addition of an Organic Space Filler. Journal of Physical Chemistry C, 2010, 114, 18240-18246.	3.1	21
113	Influence of Isomorphous Substituting Cobalt Ions on the Crystal Growth of the MOF-5 Framework Determined by Atomic Force Microscopy of Growing Core–Shell Crystals. Crystal Growth and Design, 2013, 13, 4526-4532.	3.0	21
114	Synthesis and characterisation of a microporous zirconium silicate with the structure of petarasite. Chemical Communications, 1998, , 1269-1270.	4.1	20
115	Adsorption of sodium dodecyl sulfate and sodium dodecyl phosphate at the surface of aluminium oxide studied with AFM. Corrosion Science, 2010, 52, 1103-1105.	6.6	20
116	Electron spin echo study of copper(2+)-doped zeolite K-ZK4: cation location and adsorbate interaction. The Journal of Physical Chemistry, 1986, 90, 3206-3212.	2.9	19
117	Investigation of surface methoxy groups on SAPO-34 A combined magic-angle turning NMR experimental approach with theoretical studies. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 2851-2856.	1.7	19
118	<i>CrystalGrower</i> : a generic computer program for Monte Carlo modelling of crystal growth. Chemical Science, 2021, 12, 1126-1146.	7.4	18
119	Electron spin resonance and electron spin echo study of copper(II) in zeolites H-rho and CsH-rho. The Journal of Physical Chemistry, 1986, 90, 6452-6459.	2.9	17
120	Solid-state NMR evidence for the strong binding of methanol prior to carbon–carbon bond formation during the synthesis of gasoline on molecular sieve catalysts. Journal of the Chemical Society Chemical Communications, 1990, , 918-920.	2.0	17
121	Growth Mechanisms in SAPO-34 Studied by White Light Interferometry and Atomic Force Microscopy. Crystal Growth and Design, 2010, 10, 2824-2828.	3.0	17
122	Determination of the Preassembled Nucleating Units That Are Critical for the Crystal Growth of the Metal–Organic Framework CdlFâ€4. Angewandte Chemie - International Edition, 2016, 55, 9075-9079.	13.8	17
123	Study of copper(2+) location in zeolites Na-A and K-A by electron spin resonance and electron spin echo spectroscopies. The Journal of Physical Chemistry, 1987, 91, 1850-1856.	2.9	16
124	Luminescence probes of vanadium-contaminated fluid cracking catalysts. Journal of Catalysis, 1989, 118, 31-42.	6.2	16
125	Solid-State NMR Investigation ofn-Heptane Cracking over Zeolite Beta. Journal of Catalysis, 1996, 158, 385-401.	6.2	16
126	Solid-state NMR studies of the structure and reactivity of molecular sieve catalysts. Magnetic Resonance in Chemistry, 1990, 28, S68-S81.	1.9	15

#	Article	IF	CITATIONS
127	Solid-state NMR as a probe of porous catalysts and catalytic processes. Topics in Catalysis, 1996, 3, 195-220.	2.8	15
128	29Si27Al and 1H Solid-State NMR Study of the Surface of Zeolite MAP. Chemistry of Materials, 1997, 9, 1927-1932.	6.7	15
129	Coaxial Core Shell Overgrowth of Zeolite L â^' Dependence on Original Crystal Growth Mechanism. Crystal Growth and Design, 2010, 10, 5182-5186.	3.0	15
130	In situ crystal growth of nanoporous zincophosphate observed by atomic force microscopy. Chemical Communications, 2010, 46, 1047.	4.1	15
131	Aspects of the characterization of cloverite by solid-state n.m.r. techniques. Zeolites, 1993, 13, 607-610.	0.5	14
132	Solid-State NMR Investigation of Ethylbenzene Reactions over HMOR and Pt–HMOR Catalysts. Journal of Catalysis, 1997, 167, 266-272.	6.2	14
133	Structures of Silicaâ€Based Nanoporous Materials Revealed by Microscopy. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 521-536.	1.2	14
134	Synthesis and characterisation of microporous titano-borosilicate ETBS-10. Chemical Communications, 1998, , 667-668.	4.1	13
135	13C and 15N solid-state MAS NMR study of the conversion of methanol and ammonia over H-RHO and H-SAPO-34 microporous catalysts. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 1119-1122.	1.7	13
136	Zeolitisation of Diatoms. Journal of Nanoscience and Nanotechnology, 2005, 5, 92-95.	0.9	13
137	Nanometre resolution using high-resolution scanning electron microscopy corroborated by atomic force microscopy. Chemical Communications, 2008, , 3894.	4.1	13
138	Zeolites treated with silicon tetrachloride vapour. Part 3.—Atom–atom potential calculations for the adsorption of xenon. Journal of the Chemical Society Faraday Transactions I, 1986, 82, 2851.	1.0	12
139	Synthesis, characterization and catalytic activity of vanadium-containing ETS-10. Studies in Surface Science and Catalysis, 2002, 142, 327-334.	1.5	12
140	Crystal Growth Studies on Microporous Zincophosphate-Faujasite Using Atomic Force Microscopy. Crystal Growth and Design, 2011, 11, 3163-3171.	3.0	12
141	Kraftmikroskopische Untersuchung des Kristallwachstums von Zeolith Y. Angewandte Chemie, 1996, 108, 1301-1304.	2.0	11
142	31P Magic-Angle-Turning NMR Studies of the Chemical and Electronic Nature of Phosphorus in Magnesium Aluminophosphate MgAPO-20. Journal of Physical Chemistry B, 1998, 102, 8974-8977.	2.6	11
143	Study of copper(2+)-doped zeolites Na-rho, K-rho, and Ca-rho by electron spin resonance and electron spin echo modulation spectroscopies. The Journal of Physical Chemistry, 1987, 91, 2926-2930.	2.9	10
144	Catalytic studies of the novel microporous niobium silicate AM-11. Applied Catalysis A: General, 2001, 207, 229-238.	4.3	10

#	Article	IF	CITATIONS
145	Application of DEFT and SEFT for signal-to-noise ratio enhancement andT2-selective spectra in29Si MAS NMR of zeolites. Magnetic Resonance in Chemistry, 1992, 30, 898-904.	1.9	9
146	Hierarchical porous materials: Internal structure revealed by argon ion-beam cross-section polishing, HRSEM and AFM. Solid State Sciences, 2011, 13, 745-749.	3.2	9
147	A new HRSEM approach to observe fine structures of novel nanostructured materials. Microporous and Mesoporous Materials, 2011, 146, 11-17.	4.4	9
148	Atomic Force Microscopy of Novel Zeolitic Materials Prepared by Topâ€Down Synthesis and ADOR Mechanism. Chemistry - A European Journal, 2014, 20, 10446-10450.	3.3	9
149	Interface phenomena and optical properties of structurally confined InP quantum wire ensembles. Physics of the Solid State, 1997, 39, 641-648.	0.6	8
150	A combined MAS nuclear magnetic resonance spectroscopy, in situ FT infrared spectroscopy and catalytic study of the conversion of allyl alcohol over zeolite catalysts. Catalysis Letters, 1995, 31, 377-393.	2.6	7
151	Solid-state NMR studies of n-butene isomerisation over H-ferrierite. Journal of Molecular Catalysis A, 2001, 174, 223-230.	4.8	7
152	Atomic Force Microscopy and High Resolution Scanning Electron Microscopy Investigation of Zeolite A Crystal Growth. Part 2: In Presence of Organic Additives. Journal of Physical Chemistry C, 2014, 118, 23092-23099.	3.1	7
153	Kinetic Influence of Siliceous Reactions on Structure Formation of Mesoporous Silica Formed via the Co-Structure Directing Agent Route. Journal of Physical Chemistry C, 2016, 120, 3814-3821.	3.1	7
154	Zeolites treated with silicon tetrachloride vapour. Part 5.—Catalytic cracking of n-hexane. Journal of the Chemical Society Faraday Transactions I, 1989, 85, 1945.	1.0	6
155	Gas-phase synthesis of MTBE from methanol and t-butanol over the microporous niobium silicate AM-11. Catalysis Letters, 2001, 73, 59-62.	2.6	6
156	A novel large-pore framework titanium silicate catalyst. Journal of Materials Chemistry, 2002, 12, 3819-3822.	6.7	6
157	Atomic force microscopy study of the molecular sieve MnAPO-50. Chemical Communications, 2003, , 2300-2301.	4.1	6
158	Nanoscale Electron Beam Damage Studied by Atomic Force Microscopy. Journal of Physical Chemistry C, 2009, 113, 18441-18443.	3.1	6
159	Crystal growth of the core and rotated epitaxial shell of a heterometallic metal–organic framework revealed with atomic force microscopy. Faraday Discussions, 2021, 231, 112-126.	3.2	6
160	Simulating intergrowth formation in zeolite crystals: impact on habit and functionality. Faraday Discussions, 2022, 235, 343-361.	3.2	6
161	Is constant mean curvature a valid description for mesoporous materials?. Studies in Surface Science and Catalysis, 2007, 165, 13-16.	1.5	5
162	Anatomy of screw dislocations in nanoporous SAPO-18 as revealed by atomic force microscopy. Chemical Communications, 2015, 51, 6218-6221.	4.1	5

#	Article	IF	CITATIONS
163	Determination of the Preassembled Nucleating Units That Are Critical for the Crystal Growth of the Metal–Organic Framework CdlFâ€4. Angewandte Chemie, 2016, 128, 9221-9225.	2.0	5
164	Directing the Distribution of Potassium Cations in Zeolite-LTL through Crown Ether Addition. Crystal Growth and Design, 2017, 17, 4516-4521.	3.0	5
165	Interpretation of electron spin-echo modulation for copper(II) complexes in crystalline powders. Journal of the Chemical Society Faraday Transactions I, 1987, 83, 3505.	1.0	4
166	Combined MS and NMR: attractive route to future understanding of the first stages of nucleation of nanoporous materials. Studies in Surface Science and Catalysis, 2008, , 941-944.	1.5	4
167	High-Resolution scanning electron and atomic force microscopies: observation of nanometer features on zeolite Surfaces. Studies in Surface Science and Catalysis, 2008, 174, 775-780.	1.5	4
168	Modelling crystal growth in zeolite A. Studies in Surface Science and Catalysis, 2008, 174, 705-708.	1.5	4
169	Tetrapropylammonium Occlusion in Nanoaggregates of Precursor of Silicalite-1 Zeolite Studied by 1H and 13C NMR. Inorganics, 2016, 4, 18.	2.7	4
170	In situ AFM of dissolution processes in zeolitic materials. Studies in Surface Science and Catalysis, 2007, 170, 177-184.	1.5	3
171	Shape-dependent crystal growth of zeolite L studied by atomic force microscopy. Studies in Surface Science and Catalysis, 2008, 174, 909-912.	1.5	3
172	In-Situ Atomic Force Microscopy Study of the Dissolution of Nanoporous SAPO-34 and SAPO-18. Journal of Physical Chemistry C, 2015, 119, 27580-27587.	3.1	3
173	Electron spin echo envelope modulation of powder samples exhibiting axially symmetric g tensors. The Journal of Physical Chemistry, 1987, 91, 2684-2686.	2.9	2
174	Solid-State NMR Studies of Shape Selectivity in Zeolites. Studies in Surface Science and Catalysis, 1989, , 91-112.	1.5	1
175	Fine Structures of Zeolites and Mesoporous Materials. Microscopy and Microanalysis, 2000, 6, 8-9.	0.4	1
176	Chapter 6. Elucidating Crystal Growth in Nanoporous Materials: The Importance of Microscopy. , 2007, , 95-122.		1
177	Synthesis of a KIT-6 mesoporous sulfonic acid catalyst to produce biodiesel from cashew nut oil. Brazilian Journal of Chemical Engineering, 2022, 39, 1001-1011.	1.3	1
178	1H and 13C Solid-State NMR Studies of Catalytic Reactions on Molecular Sieves. , 1993, , 473-494.		0