Jianping Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3085985/publications.pdf Version: 2024-02-01

ILANDING DENC

#	Article	IF	CITATIONS
1	Optically active porous hybrid particles constructed by alkynylated cellulose nanocrystals, helical substituted polyacetylene, and inorganic silica for enantioâ€differentiating towards naproxen. Chirality, 2022, 34, 48-60.	2.6	2
2	Polyamide foams prepared by solution foaming approach and their adsorption property towards bisphenol A. Microporous and Mesoporous Materials, 2022, 330, 111626.	4.4	3
3	Organic Polymer-Constructed Chiral Particles: Preparation and Chiral Applications. Polymer Reviews, 2022, 62, 826-859.	10.9	10
4	Helix‧ense‧elective Polymerization of Achiral Monomers for the Preparation of Chiral Helical Polyacetylenes Showing Intense CPL in Solid Film State. Macromolecular Rapid Communications, 2022, 43, e2200111.	3.9	8
5	Aggregation-Induced Emissive Silicone Elastomer with Multiple Stimuli Responsiveness. ACS Applied Polymer Materials, 2022, 4, 4264-4273.	4.4	7
6	Regulating the Helical Chirality of Racemic Polyacetylene by Chiral Polylactide for Realizing Full-Color and White Circularly Polarized Luminescence. Chemistry of Materials, 2022, 34, 6116-6128.	6.7	24
7	Biomassâ€Derived Acetylenic Polymer Monoliths Prepared by High Internal Phase Emulsion Template Method and Used for Adsorbing Cationic Pollutants. Macromolecular Chemistry and Physics, 2021, 222, 2000448.	2.2	4
8	Chiral Graphene Hybrid Materials: Structures, Properties, and Chiral Applications. Advanced Science, 2021, 8, 2003681.	11.2	43
9	Chiral Helical Polymer/Perovskite Hybrid Nanofibers with Intense Circularly Polarized Luminescence. ACS Nano, 2021, 15, 7463-7471.	14.6	82
10	Preparation and characterization of microcellular foamed thermoplastic polyamide elastomer composite consisting of <scp>EVA</scp> / <scp>TPAE1012</scp> . Journal of Applied Polymer Science, 2021, 138, 50952.	2.6	13
11	Two Chirality Transfer Channels Assist Handedness Inversion and Amplification of Circularly Polarized Luminescence in Chiral Helical Polyacetylene Thin Films. Macromolecules, 2021, 54, 5043-5052.	4.8	50
12	Recycling extrusion of poly(etherâ€ <i>block</i> â€amide) thermoplastic elastomer (<scp>Pebax</scp> ®): the influence of chemical and crystal change on mechanical properties. Polymer International, 2021, 70, 1621-1630.	3.1	1
13	Switchable Chiroptical Flexible Films Based on Chiral Helical Superstructure: Handedness Inversion and Dissymmetric Adjustability by Stretching. Advanced Functional Materials, 2021, 31, 2105315.	14.9	21
14	Preparation and Chiral Applications of Optically Active Polyamides. Macromolecular Rapid Communications, 2021, 42, e2100341.	3.9	12
15	Thermoplastic Polyamide Elastomers: Synthesis, Structures/Properties, and Applications. Macromolecular Materials and Engineering, 2021, 306, 2100568.	3.6	25
16	Chiral magnetic hybrid materials constructed from macromolecules and their chiral applications. Nanoscale, 2021, 13, 11765-11780.	5.6	11
17	Amino-acid-substituted polyacetylene-based chiral core–shell microspheres: helix structure induction and application for chiral resolution and adsorption. Polymer Chemistry, 2021, 12, 6404-6416.	3.9	4
18	Preparation Methods, Performance Improvement Strategies, and Typical Applications of Polyamide Foams. Industrial & Engineering Chemistry Research, 2021, 60, 17365-17378.	3.7	9

#	Article	IF	CITATIONS
19	Frontiers in circularly polarized luminescence: molecular design, self-assembly, nanomaterials, and applications. Science China Chemistry, 2021, 64, 2060-2104.	8.2	248
20	Hydrolyzation-Triggered Ultralong Room-Temperature Phosphorescence in Biobased Nonconjugated Polymers. ACS Applied Materials & amp; Interfaces, 2021, 13, 59320-59328.	8.0	20
21	Preparation and Chirality Investigation of Electrospun Nanofibers from Optically Active Helical Substituted Polyacetylenes. Macromolecules, 2020, 53, 602-608.	4.8	15
22	Flexible Janus Electrospun Nanofiber Films for Wearable Triboelectric Nanogenerator. Advanced Materials Technologies, 2020, 5, 1900859.	5.8	29
23	<i>In situ</i> polymerization of flame retardant modification polyamide 6,6 with 2â€carboxy ethyl (phenyl) phosphinic acid. Journal of Applied Polymer Science, 2020, 137, 48687.	2.6	9
24	Stimuli-responsive circularly polarized luminescent films with tunable emission. Journal of Materials Chemistry C, 2020, 8, 1459-1465.	5.5	59
25	Colorâ€Tunable Circularly Polarized Luminescence with Helical Polyacetylenes as Fluorescence Converters. Advanced Optical Materials, 2020, 8, 2000858.	7.3	35
26	Chiral helical polymer materials derived from achiral monomers and their chiral applications. Polymer Chemistry, 2020, 11, 5407-5423.	3.9	48
27	Aggregation-Induced Emission-Active Chiral Helical Polymers Show Strong Circularly Polarized Luminescence in Thin Films. Macromolecules, 2020, 53, 8041-8049.	4.8	58
28	Recent advances, challenges and perspectives in enantioselective release. Journal of Controlled Release, 2020, 324, 156-171.	9.9	31
29	Electrospinning chiral fluorescent nanofibers from helical polyacetylene: preparation and enantioselective recognition ability. Nanoscale Advances, 2020, 2, 1301-1308.	4.6	9
30	Electrospinning Janus Type CoOx/C Nanofibers as Electrocatalysts for Oxygen Reduction Reaction. Advanced Fiber Materials, 2020, 2, 85-92.	16.1	41
31	Macromolecular Chiral Amplification through a Random Coil to One-Handed Helix Transformation Induced by Metal Ion Coordination in an Aqueous Solution. Macromolecules, 2020, 53, 6002-6017.	4.8	17
32	Optically active hybrid particles constructed by chiral helical substituted polyacetylene and POSS. Journal of Applied Polymer Science, 2020, 137, 49167.	2.6	3
33	Optically Active Janus Particles Constructed by Chiral Helical Polymers through Emulsion Polymerization Combined with Solvent Evaporation-Induced Phase Separation. ACS Applied Materials & Interfaces, 2020, 12, 6319-6327.	8.0	36
34	Helix-sense-selective surface grafting polymerization for preparing optically active hybrid microspheres. Polymer Chemistry, 2020, 11, 1637-1645.	3.9	3
35	Multifarious Chiral Nanoarchitectures Serving as Handed-Selective Fluorescence Filters for Generating Full-Color Circularly Polarized Luminescence. ACS Nano, 2020, 14, 3208-3218.	14.6	76
36	Aldehyde-containing nanofibers electrospun from biomass vanillin-derived polymer and their application as adsorbent. Separation and Purification Technology, 2020, 246, 116916.	7.9	15

#	Article	IF	CITATIONS
37	Chiral helical substituted polyacetylene grafted on hollow polymer particles: preparation and enantioselective adsorption towards cinchona alkaloids. Polymer Chemistry, 2019, 10, 4441-4448.	3.9	10
38	Polylactide-Based Chiral Porous Monolithic Materials Prepared Using the High Internal Phase Emulsion Template Method for Enantioselective Release. ACS Biomaterials Science and Engineering, 2019, 5, 5072-5081.	5.2	12
39	Skin-inspired flexible and high-sensitivity pressure sensors based on rGO films with continuous-gradient wrinkles. Nanoscale, 2019, 11, 4258-4266.	5.6	131
40	A Oneâ€Pot Polymerization for Concurrently Inducing Predominant Helicity in Optically Inactive Helical Polymer and Constructing Grapheneâ€Based Chiral Hybrid Foams. Macromolecular Rapid Communications, 2019, 40, e1900146.	3.9	3
41	Immobilizing cellulase on multi-layered magnetic hollow particles: Preparation, bio-catalysis and adsorption performances. Microporous and Mesoporous Materials, 2019, 285, 112-119.	4.4	20
42	Chiral, thermal-responsive hydrogels containing helical hydrophilic polyacetylene: preparation and enantio-differentiating release ability. Polymer Chemistry, 2019, 10, 1780-1786.	3.9	14
43	Biobased, Porous Poly(high internal phase emulsions): Prepared from Biomass-Derived Vanillin and Laurinol and Applied as an Oil Adsorbent. Industrial & Engineering Chemistry Research, 2019, 58, 5533-5542.	3.7	16
44	Chiral helical disubstituted polyacetylenes form optically active particles through precipitation polymerization. Polymer Chemistry, 2019, 10, 2290-2297.	3.9	6
45	Optically Active Biobased Hollow Polymer Particles: Preparation, Chiralization, and Adsorption toward Chiral Amines. Industrial & amp; Engineering Chemistry Research, 2019, 58, 4090-4098.	3.7	10
46	Nonspherical chiral helical polymer particles with programmable morphology prepared by electrospraying. Nanoscale, 2019, 11, 23197-23205.	5.6	10
47	Green-solvent-processable strategies for achieving large-scale manufacture of organic photovoltaics. Journal of Materials Chemistry A, 2019, 7, 22826-22847.	10.3	76
48	Heat-resistant Poly(methyl methacrylate) Modified by Biomass Syringaldehyde Derivative: Preparation, Thermostability and Transparency. Fibers and Polymers, 2019, 20, 2254-2260.	2.1	5
49	Multi-functional stretchable sensors based on a 3D-rGO wrinkled microarchitecture. Nanoscale Advances, 2019, 1, 4406-4414.	4.6	9
50	Optically Active Microspheres Containing Schiff Base: Preparation and Enantio-Differentiating Release toward Drug Citronellal. Industrial & Engineering Chemistry Research, 2019, 58, 1105-1113.	3.7	7
51	Combining Chiral Helical Polymer with Achiral Luminophores for Generating Full-Color, On–Off, and Switchable Circularly Polarized Luminescence. Macromolecules, 2019, 52, 376-384.	4.8	88
52	Wavelengthâ€Gradient Graphene Films for Pressureâ€Sensitive Sensors. Advanced Materials Technologies, 2019, 4, 1800363.	5.8	31
53	Biomass polymeric microspheres containing aldehyde groups: Immobilizing and controlled-releasing amino acids as green metal corrosion inhibitor. Chemical Engineering Journal, 2018, 341, 146-156.	12.7	38
54	Dispersion Polymerization of Substituted Acetylenes in the Presence of Chiral Source for Preparing Monodispersed Chiral Nanoparticles. Macromolecular Rapid Communications, 2018, 39, e1700759.	3.9	10

#	Article	IF	CITATIONS
55	Chiral, crosslinked, and micron-sized spheres of substituted polyacetylene prepared by precipitation polymerization. Polymer, 2018, 139, 76-85.	3.8	11
56	Polylactide-based chiral particles with enantio-differentiating release ability. Chemical Engineering Journal, 2018, 344, 262-269.	12.7	15
57	Preparation and Applications of Chiral Polymeric Particles. Israel Journal of Chemistry, 2018, 58, 1286-1298.	2.3	7
58	Chiral Helical Polymer Nanomaterials with Tunable Morphology: Prepared with Chiral Solvent To Induce Helix-Sense-Selective Precipitation Polymerization. Macromolecules, 2018, 51, 8878-8886.	4.8	46
59	Biomass ferulic acid-derived hollow polymer particles as selective adsorbent for anionic dye. Reactive and Functional Polymers, 2018, 132, 9-18.	4.1	14
60	Intense Circularly Polarized Luminescence Contributed by Helical Chirality of Monosubstituted Polyacetylenes. Macromolecules, 2018, 51, 7104-7111.	4.8	75
61	Chiral Particles Consisting of Helical Polylactide and Helical Substituted Polyacetylene: Preparation and Synergistic Effects in Enantio-Differentiating Release. Macromolecules, 2018, 51, 4003-4011.	4.8	24
62	Synthesis of biomass trans-anethole based magnetic hollow polymer particles and their applications as renewable adsorbent. Chemical Engineering Journal, 2018, 352, 20-28.	12.7	42
63	Cellulose Concurrently Induces Predominantly One-Handed Helicity in Helical Polymers and Controls the Shape of Optically Active Particles Thereof. Macromolecules, 2018, 51, 5656-5664.	4.8	19
64	Seedâ€Surface Grafting Precipitation Polymerization for Preparing Microsized Optically Active Helical Polymer Core/Shell Particles and Their Application in Enantioselective Crystallization. Macromolecular Rapid Communications, 2018, 39, e1800072.	3.9	7
65	Poly(<i>N</i> , <i>N</i> -dimethylacrylamide-octadecyl acrylate)-clay hydrogels with high mechanical properties and shape memory ability. RSC Advances, 2018, 8, 16773-16780.	3.6	22
66	Twisted bio-nanorods serve as a template for constructing chiroptically active nanoflowers. Nanoscale, 2018, 10, 12163-12168.	5.6	10
67	Chiral PLLA particles with tunable morphology and lamellar structure for enantioselective crystallization. Journal of Materials Science, 2018, 53, 11932-11941.	3.7	9
68	Emulsion Polymerization of Acetylenics for Constructing Optically Active Helical Polymer Nanoparticles. Polymer Reviews, 2017, 57, 119-137.	10.9	35
69	A chiral interpenetrating polymer network constructed by helical substituted polyacetylenes and used for glucose adsorption. Polymer Chemistry, 2017, 8, 1426-1434.	3.9	18
70	Chiral 3D porous hybrid foams constructed by graphene and helically substituted polyacetylene: preparation and application in enantioselective crystallization. Journal of Materials Science, 2017, 52, 4575-4586.	3.7	10
71	Helix-sense-selective co-precipitation for preparing optically active helical polymer nanoparticles/graphene oxide hybrid nanocomposites. Nanoscale, 2017, 9, 6877-6885.	5.6	18
72	Biobased Magnetic Microspheres Containing Aldehyde Groups: Constructed by Vanillin-Derived Polymethacrylate/Fe ₃ O ₄ and Recycled in Adsorbing Amine. ACS Sustainable Chemistry and Engineering, 2017, 5, 658-666.	6.7	27

#	Article	IF	CITATIONS
73	Optically Active Helical Polyacetylene Self-Assembled into Chiral Micelles Used As Nanoreactor for Helix-Sense-Selective Polymerization. ACS Macro Letters, 2017, 6, 6-10.	4.8	24
74	Biomass <i>trans</i> -Anethole-Based Hollow Polymer Particles: Preparation and Application as Sustainable Absorbent. ACS Sustainable Chemistry and Engineering, 2017, 5, 10011-10018.	6.7	32
75	Helically twining polymerization for constructing polymeric double helices. Polymer Chemistry, 2017, 8, 5726-5733.	3.9	9
76	Ring opening precipitation polymerization for preparing polylactide particles with tunable size and porous structure and their application as chiral material. Polymer, 2017, 127, 214-219.	3.8	15
77	Graphene Oxide (GO) as Stabilizer for Preparing Chirally Helical Polyacetylene/GO Hybrid Microspheres via Suspension Polymerization. Macromolecular Rapid Communications, 2017, 38, 1700452.	3.9	10
78	Optically active microspheres from helical substituted polyacetylene with pendent ferrocenyl amino-acid derivative. Preparation and recycling use for direct asymmetric aldol reaction in water. Polymer, 2017, 125, 200-207.	3.8	14
79	Fabrication of αâ€Fe ₂ O ₃ @rGO/PAN Nanofiber Composite Membrane for Photocatalytic Degradation of Organic Dyes. Advanced Materials Interfaces, 2017, 4, 1700845.	3.7	39
80	Photocatalytic Degradation: Fabrication of αâ€Fe ₂ O ₃ @rGO/PAN Nanofiber Composite Membrane for Photocatalytic Degradation of Organic Dyes (Adv. Mater. Interfaces 24/2017). Advanced Materials Interfaces, 2017, 4, 1770132.	3.7	5
81	Effects of cosolvents on helical substituted polyacetylene particles prepared through suspension polymerization. Journal of Polymer Science Part A, 2017, 55, 2670-2678.	2.3	5
82	Optically Active Hybrid Materials Constructed from Helically Substituted Polyacetylenes. Chemical Record, 2016, 16, 964-976.	5.8	7
83	Emulsification-Induced Homohelicity in Racemic Helical Polymer for Preparing Optically Active Helical Polymer Nanoparticles. Macromolecular Rapid Communications, 2016, 37, 568-574.	3.9	15
84	Chiral, pH responsive hydrogels constructed by <i>N</i> -Acryloyl-alanine and PEGDA/ <i>α</i> -CD inclusion complex: preparation and chiral release ability. Polymers for Advanced Technologies, 2016, 27, 169-177.	3.2	10
85	Emulsion copolymerization of substituted acetylenes for constructing optically active helical polymer nanoparticles. Synergistic effects and helicity inversion. Journal of Polymer Science Part A, 2016, 54, 1679-1685.	2.3	4
86	Biomass trans-anethole-based heat-resistant copolymer microspheres: Preparation and thermostability. Materials Today Communications, 2016, 9, 60-66.	1.9	11
87	Hydrophobic association hydrogels based on N-acryloyl-alanine and stearyl acrylate using gelatin as emulsifier. RSC Advances, 2016, 6, 38957-38963.	3.6	7
88	Materials Established for Enantioselective Release of Chiral Compounds. Industrial & Engineering Chemistry Research, 2016, 55, 6037-6048.	3.7	24
89	Optically Active Physical Gels with Chiral Memory Ability: Directly Prepared by Helix-Sense-Selective Polymerization. Macromolecules, 2016, 49, 2948-2956.	4.8	36
90	Construction of Molecularly Imprinted Polymer Microspheres by Using Helical Substituted Polyacetylene and Application in Enantio-Differentiating Release and Adsorption. ACS Applied Materials & Interfaces, 2016, 8, 12494-12503.	8.0	40

#	Article	IF	CITATIONS
91	Alkynylated Cellulose Nanocrystals Simultaneously Serving as Chiral Source and Stabilizing Agent for Constructing Optically Active Helical Polymer Particles. Macromolecules, 2016, 49, 7728-7736.	4.8	19
92	Boronic acid-containing optically active microspheres: Preparation, chiral adsorption and chirally controlled release towards drug DOPA. Chemical Engineering Journal, 2016, 306, 1162-1171.	12.7	21
93	Bioinspired hybrid material composed of helical polymer grafts and graphene oxide: Reversible transformation of particulate and extended structures of the grafts and application in chiral enrichment. Polymer, 2016, 101, 284-290.	3.8	7
94	High Glass-Transition Temperature Acrylate Polymers Derived from Biomasses, Syringaldehyde, and Vanillin. Macromolecular Chemistry and Physics, 2016, 217, 2402-2408.	2.2	42
95	Renewable Microspheres Constructed by Methyl Isoeugenolâ€Derived Copolymers. Macromolecular Chemistry and Physics, 2016, 217, 1792-1800.	2.2	6
96	Chiral porous hybrid particles constructed by helical substituted polyacetylene covalently bonded organosilica for enantioselective release. Journal of Materials Chemistry B, 2016, 4, 6437-6445.	5.8	25
97	Helical Polymers Showing Inverse Helicity and Synergistic Effect in Chiral Catalysis: Catalytic Functionality Determining Enantioconfiguration and Helical Frameworks Providing Asymmetric Microenvironment. Macromolecular Chemistry and Physics, 2016, 217, 880-888.	2.2	7
98	Macromol. Rapid Commun. 7/2016. Macromolecular Rapid Communications, 2016, 37, 672-672.	3.9	0
99	Micelle-provided microenvironment facilitating the formation of single-handed helical polymer-based nanoparticles. RSC Advances, 2016, 6, 59066-59072.	3.6	5
100	Optically Active Particles with Tunable Morphology: Prepared by Embedding Graphene Oxide/Fe ₃ O ₄ in Helical Polyacetylene. ACS Applied Materials & Interfaces, 2016, 8, 16273-16279.	8.0	18
101	Biomass Vanillin-Derived Polymeric Microspheres Containing Functional Aldehyde Groups: Preparation, Characterization, and Application as Adsorbent. ACS Applied Materials & Interfaces, 2016, 8, 2753-2763.	8.0	41
102	Optically active hollow nanoparticles constructed by chirally helical substituted polyacetylene. Polymer Chemistry, 2016, 7, 1675-1681.	3.9	31
103	Biobased Microspheres Consisting of Poly(<i>trans</i> -anethole- <i>co</i> -maleic anhydride) Prepared by Precipitation Polymerization and Adsorption Performance. ACS Sustainable Chemistry and Engineering, 2016, 4, 1446-1453.	6.7	21
104	Helical polymer/Fe ₃ O ₄ NPs constructing optically active, magnetic core/shell microspheres: preparation by emulsion polymerization and recycling application in enantioselective crystallization. Polymer Chemistry, 2016, 7, 125-134.	3.9	34
105	Helical Polymer Particles Derived from Aromatic Acetylenics and Prepared by Suspension Polymerization. Macromolecular Chemistry and Physics, 2015, 216, 1963-1971.	2.2	3
106	Optically active helical polymers with pendent thiourea groups: Chiral organocatalyst for asymmetric michael addition reaction. Journal of Polymer Science Part A, 2015, 53, 1816-1823.	2.3	20
107	Helix-Sense-Selective Precipitation Polymerization of Achiral Monomer for Preparing Optically Active Helical Polymer Particles. Macromolecules, 2015, 48, 3406-3413.	4.8	49
108	Chiral, pH-sensitive polyacrylamide hydrogels: Preparation and enantio-differentiating release ability. Polymer, 2015, 68, 246-252.	3.8	20

#	Article	IF	CITATIONS
109	"Sergeants and soldiers rule―in helical substituted polyacetylene-derived copolymer nanoparticles. Colloid and Polymer Science, 2015, 293, 349-355.	2.1	6
110	Chiral Monolithic Absorbent Constructed by Optically Active Helical-Substituted Polyacetylene and Graphene Oxide: Preparation and Chiral Absorption Capacity. Macromolecular Rapid Communications, 2015, 36, 319-326.	3.9	20
111	Optically active, magnetic microspheres: Constructed by helical substituted polyacetylene with pendent prolineamide groups and applied as catalyst for Aldol reaction. Reactive and Functional Polymers, 2015, 93, 10-17.	4.1	9
112	Optically Active Porous Microspheres Consisting of Helical Substituted Polyacetylene Prepared by Precipitation Polymerization without Porogen and the Application in Enantioselective Crystallization. ACS Macro Letters, 2015, 4, 348-352.	4.8	17
113	Renewable Eugenol-Based Polymeric Oil-Absorbent Microspheres: Preparation and Oil Absorption Ability. ACS Sustainable Chemistry and Engineering, 2015, 3, 599-605.	6.7	71
114	Chiral, fluorescent microparticles constructed by optically active helical substituted polyacetylene: preparation and enantioselective recognition ability. RSC Advances, 2015, 5, 26236-26245.	3.6	18
115	Optically Active Porous Materials Constructed by Chirally Helical Substituted Polyacetylene through a High Internal Phase Emulsion Approach and the Application in Enantioselective Crystallization. ACS Macro Letters, 2015, 4, 1179-1183.	4.8	25
116	Fabrication of optically active microparticles constructed by helical polymer/quinine and their application to asymmetric Michael addition. Polymer, 2015, 80, 115-122.	3.8	18
117	Optically active helical polyacetylene/Fe ₃ O ₄ composite microspheres: prepared by precipitation polymerization and used for enantioselective crystallization. RSC Advances, 2014, 4, 63611-63619.	3.6	22
118	Particles of polyacetylene and its derivatives: preparation and applications. Polymer Chemistry, 2014, 5, 1107-1118.	3.9	52
119	Helix-sense-selective polymerization of achiral substituted acetylene in chiral micelles for preparing optically active polymer nanoparticles: Effects of chiral emulsifiers. Polymer, 2014, 55, 840-847.	3.8	17
120	The First Suspension Polymerization for Preparing Optically Active Microparticles Purely Constructed from Chirally Helical Substituted Polyacetylenes. Macromolecular Rapid Communications, 2014, 35, 1216-1223.	3.9	28
121	A Facile Method for Preparing Porous, Optically Active, Magnetic Fe ₃ O ₄ @poly(<i>N</i> â€acryloylâ€leucine) Inverse Core/Shell Composite Microspheres. Macromolecular Rapid Communications, 2014, 35, 91-96.	3.9	9
122	Helical Substituted Polyacetyleneâ€Derived Fluorescent Microparticles Prepared by Precipitation Polymerization. Macromolecular Rapid Communications, 2014, 35, 908-915.	3.9	17
123	Optically Active, Magnetic Microparticles: Constructed by Chiral Helical Substituted Polyacetylene/Fe ₃ O ₄ Nanoparticles and Recycled for Uses in Enantioselective Crystallization. Industrial & Engineering Chemistry Research, 2014, 53, 17394-17402.	3.7	22
124	Optically Active Microspheres Constructed by Helical Substituted Polyacetylene and Used for Adsorption of Organic Compounds in Aqueous Systems. ACS Applied Materials & Interfaces, 2014, 6, 19041-19049.	8.0	21
125	Chiral Functionalization of Graphene Oxide by Optically Active Helical-Substituted Polyacetylene Chains and Its Application in Enantioselective Crystallization. ACS Applied Materials & Interfaces, 2014, 6, 9790-9798.	8.0	39
126	pH-Sensitive Chiral Hydrogels Consisting of Poly(<i>N</i> -acryloyl- <scp>l</scp> -alanine) and l²-Cyclodextrin: Preparation and Enantiodifferentiating Adsorption and Release Ability. Industrial & Engineering Chemistry Research, 2014, 53, 8069-8078.	3.7	13

#	Article	IF	CITATIONS
127	Immobilization of Optically Active Helical Polyacetylene-Derived Nanoparticles on Graphene Oxide by Chemical Bonds and Their Use in Enantioselective Crystallization. Chemistry of Materials, 2014, 26, 1948-1956.	6.7	45
128	Magnetic composite nanoparticles consisting of helical poly(n-hexyl isocyanate) and Fe ₃ O ₄ prepared via click reaction. RSC Advances, 2014, 4, 48796-48803.	3.6	4
129	Noncovalent Chiral Functionalization of Graphene with Optically Active Helical Polymers. Macromolecular Rapid Communications, 2013, 34, 1368-1374.	3.9	17
130	Optically Active Particles of Chiral Polymers. Macromolecular Rapid Communications, 2013, 34, 1426-1445.	3.9	48
131	Optically active, magnetic gels consisting of helical substituted polyacetylene and Fe3O4 nanoparticles: preparation and chiral recognition ability. Journal of Materials Chemistry C, 2013, 1, 8066.	5.5	30
132	β-Cyclodextrin-based oil-absorbent microspheres: Preparation and high oil absorbency. Carbohydrate Polymers, 2013, 91, 217-223.	10.2	50
133	Chiral polymeric microspheres grafted with optically active helical polymer chains: a new class of materials for chiral recognition and chirally controlled release. Polymer Chemistry, 2013, 4, 645-652.	3.9	38
134	Chiral pHâ€Responsive Amphiphilic Polymer Coâ€networks: Preparation, Chiral Recognition, and Release Abilities. Macromolecular Chemistry and Physics, 2013, 214, 1375-1383.	2.2	13
135	Optically active thermosensitive amphiphilic polymer brushes based on helical polyacetylene: preparation through "click―onto grafting method and self-assembly. Polymer Bulletin, 2012, 69, 1023-1040.	3.3	13
136	Chiral Microspheres Consisting Purely of Optically Active Helical Substituted Polyacetylene: The First Preparation via Precipitation Polymerization and Application in Enantioselective Crystallization. Macromolecules, 2012, 45, 7329-7338.	4.8	72
137	Chiral microspheres constructed by helical substituted polyacetylene: A new class of organocatalyst toward asymmetric catalysis. Synthetic Metals, 2012, 162, 1858-1863.	3.9	26
138	Heat-resistant poly(N-(1-phenylethyl)maleimide-co-styrene) microspheres prepared by dispersion polymerization. Journal of Materials Chemistry, 2012, 22, 6697.	6.7	10
139	Optically active core/shell nanoparticles prepared using selfâ€assembled polymer micelle as reactive nanoreactor. Journal of Polymer Science Part A, 2012, 50, 4415-4422.	2.3	6
140	Aqueous Emulsion Polymerization of Substituted Acetylenes: Effects of Organic Solvent and Analysis of Blue Shifts and Emulsion Polymerization Mechanism. Macromolecular Chemistry and Physics, 2012, 213, 603-609.	2.2	6
141	Magnetic Fe ₃ O ₄ â€PSâ€Polyacetylene Composite Microspheres Showing Chirality Derived From Helical Substituted Polyacetylene. Macromolecular Rapid Communications, 2012, 33, 672-677.	3.9	32
142	Helical Polymer as Mimetic Enzyme Catalyzing Asymmetric Aldol Reaction. Macromolecular Rapid Communications, 2012, 33, 652-657.	3.9	61
143	Oilâ€absorbent beads containing <i>β</i> yclodextrin moieties: preparation via suspension polymerization and high oil absorbency. Polymers for Advanced Technologies, 2012, 23, 810-816.	3.2	27
144	Optically Active Helical Substituted Polyacetylenes Showing Reversible Helix Inversion in Emulsion and Solution State. Macromolecular Rapid Communications, 2012, 33, 212-217.	3.9	16

#	Article	IF	CITATIONS
145	New route to monodispersed amphiphilic coreâ€shell polymer nanoparticles: Polymerization of styrene from αâ€methylstyreneâ€containing macroinitiator. Journal of Applied Polymer Science, 2012, 124, 4121-4126.	2.6	7
146	Preparation of Optically Active Nanoparticles by Emulsification of Preformed Helical Polymers. Macromolecular Chemistry and Physics, 2011, 212, 353-360.	2.2	9
147	Novel optically active helical poly(N-propargylthiourea)s: synthesis, characterization and complexing ability toward Fe(iii) ions. Polymer Chemistry, 2011, 2, 2825.	3.9	14
148	Optically Active Amphiphilic Polymer Brushes Based on Helical Polyacetylenes: Preparation and Self-Assembly into Core/Shell Particles. Macromolecules, 2011, 44, 736-743.	4.8	56
149	Optically Active Helical Substituted Polyacetylenes as Chiral Seeding for Inducing Enantioselective Crystallization of Racemic <i>N</i> -(<i>tert</i> Butoxycarbonyl)alanine. Macromolecules, 2011, 44, 7109-7114.	4.8	32
150	Preparation of hydrophobic helical poly(N-propargylamide)s in aqueous medium via a monomer/cyclodextrin inclusion complex. Polymer Chemistry, 2011, 2, 694-701.	3.9	13
151	Synthesis and characterization of magnetic Fe3O4-silica-poly(Î ³ -benzyl-l-glutamate) composite microspheres. Reactive and Functional Polymers, 2011, 71, 1040-1044.	4.1	30
152	Chiral helical polyacetylene–vinyl polymer core/shell nanoparticles: preparation and application to optically active composite films. Colloid and Polymer Science, 2011, 289, 133-139.	2.1	8
153	Microspheres Consisting of Optically Active Helical Substituted Polyacetylenes: Preparation via Suspension Polymerization and Their Chiral Recognition/Release Properties. Macromolecular Rapid Communications, 2011, 32, 1986-1992.	3.9	22
154	Hollow Twoâ€Layered Chiral Nanoparticles Consisting of Optically Active Helical Polymer/Silica: Preparation and Application for Enantioselective Crystallization. Advanced Functional Materials, 2011, 21, 2345-2350.	14.9	124
155	Degradation and initiation polymerization mechanism of αâ€methylstyreneâ€containing macroinitiators. Journal of Applied Polymer Science, 2011, 120, 466-473.	2.6	9
156	Helix‣ense‣elective Polymerization of Achiral Substituted Acetylenes in Chiral Micelles. Angewandte Chemie - International Edition, 2011, 50, 4909-4912.	13.8	97
157	Synthesis of Sub-100 nm Nanoparticles by Emulsifier-free Emulsion Polymerization of α-Methylstyrene, Methyl Methacrylate and Acrylic Acid. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 846-850.	2.2	7
158	A Novel Type of Mono-Substituted Polyacetylene: Synthesis and Characterization of Poly(N-Propargylthiourea)s. Designed Monomers and Polymers, 2011, 14, 143-154.	1.6	3
159	Using hydroxypropylâ€Î²â€cyclodextrin for the preparation of hydrophobic poly(ketoethyl methacrylate) in aqueous medium. Journal of Applied Polymer Science, 2010, 115, 2933-2939.	2.6	1
160	Synthesis and characterization of poly(N-propargylurea)s with helical conformation, optical activity and fluorescence properties. Reactive and Functional Polymers, 2010, 70, 116-121.	4.1	13
161	The preparation of amphiphilic coreâ€shell nanospheres by using waterâ€soluble macrophotoinitiator. Journal of Polymer Science Part A, 2010, 48, 936-942.	2.3	3
162	Nanoparticles consisting of optically active helical polymers: Preparation via aqueous catalytic miniemulsion polymerization and the effects of particles size on their optical activity. Journal of Polymer Science Part A, 2010, 48, 1661-1668.	2.3	25

#	Article	IF	CITATIONS
163	Optically active composite nanoparticles with chemical bonds between core and shell. Journal of Polymer Science Part A, 2010, 48, 5611-5617.	2.3	11
164	Synthesis and chiral recognition of optically active hydrogels containing helical polymer chains. Polymer Chemistry, 2010, 1, 1030.	3.9	43
165	Effect of solvents on polymerization of N-propargylamide monomer and secondary structure of polymer. Polymer Chemistry, 2010, 1, 1633.	3.9	1
166	Optically Active Helical Polyacetylene@silica Hybrid Organicâ^'inorganic Core/Shell Nanoparticles: Preparation and Application for Enantioselective Crystallization. Macromolecules, 2010, 43, 9613-9619.	4.8	53
167	Hollow Polymer Particles with Nanoscale Pores and Reactive Groups on Their Rigid Shells: Preparation and Application as Nanoreactors. Journal of Physical Chemistry B, 2010, 114, 2593-2601.	2.6	35
168	Asymmetric catalytic emulsion polymerization in chiral micelles. Chemical Communications, 2010, 46, 2745.	4.1	44
169	Novel Category of Optically Active Core/Shell Nanoparticles: The Core Consisting of a Helical-Substituted Polyacetylene and the Shell Consisting of a Vinyl Polymer. Macromolecules, 2010, 43, 3177-3182.	4.8	46
170	Hollow polymeric microspheres grafted with optically active helical polymer chains: Preparation and their chiral recognition ability. Journal of Materials Chemistry, 2010, 20, 781-789.	6.7	58
171	Synthesis of Nano-Latex Particles of Optically Active Helical Substituted Polyacetylenes via Catalytic Microemulsion Polymerization in Aqueous Systems. Macromolecules, 2009, 42, 933-938.	4.8	73
172	Using glycidyl methacrylate as crossâ€linking agent to prepare thermosensitive hydrogels by a novel oneâ€step method. Journal of Polymer Science Part A, 2008, 46, 2193-2201.	2.3	47
173	A novel type of optically active helical polymers: Synthesis and characterization of poly(<i>N</i> â€propargylureas). Journal of Polymer Science Part A, 2008, 46, 4112-4121.	2.3	60
174	Photoâ€induced polymerization of methyl methacrylate/cyclodextrin complex in aqueous solution. Polymers for Advanced Technologies, 2008, 19, 1649-1655.	3.2	4
175	Functionalization of Multiâ€Walled Carbon Nanotubes by Thermoâ€Grafting with <i>î±</i> â€Methylstyreneâ€Containing Copolymers. Macromolecular Rapid Communications, 2008, 29, 1521-1526.	3.9	15
176	Stability of poly(<i>N</i> â€propargylamide)s under ultraviolet irradiation. Journal of Applied Polymer Science, 2008, 107, 1924-1931.	2.6	2
177	Influence of Solvent on the Secondary Structure of Helical Poly(N-propargyl-(1R)-camphor-10-sulfamide). Polymer Journal, 2008, 40, 436-441.	2.7	9
178	Synthesis and Characterization ofN-Propargyl Cinnamamide Polymers and Copolymers. Macromolecular Chemistry and Physics, 2007, 208, 316-323.	2.2	8
179	The Formation of a Stable, Helical Conformation in Poly(N-propargylamides) through Synergic Effects among their Pendent Groups. Macromolecular Chemistry and Physics, 2007, 208, 218-223.	2.2	20
180	A Novel Strategy for the Preparation of Reactively Compatibilized Polymer Blends with Oligomers Containing <i>l±</i> â€Methyl Styrene Units. Macromolecular Rapid Communications, 2007, 28, 2163-2169.	3.9	13

#	Article	IF	CITATIONS
181	Synthesis of optically active poly(N-propargylsulfamides) with helical conformation. Journal of Polymer Science Part A, 2007, 45, 500-508.	2.3	51
182	Helical and random coil conformations ofN-propargylamide polymer and copolymers. Polymer International, 2007, 56, 1247-1253.	3.1	2
183	Conformational Transition between Random Coil and Helix of Copolymers ofN-Propargylamides. Macromolecular Chemistry and Physics, 2004, 205, 1103-1107.	2.2	23
184	Variation of Helical Pitches Driven by the Composition ofN-Propargylamide Copolymers. Macromolecules, 2004, 37, 9715-9721.	4.8	59
185	Effects of Steric Repulsion on Helical Conformation of Poly(N-propargylamides) with Phenyl Groups. Macromolecules, 2004, 37, 7156-7162.	4.8	62
186	Conformational Transition between Random Coil and Helix of Poly(N-propargylamides). Macromolecules, 2004, 37, 1891-1896.	4.8	87
187	Synthesis and Characterization of Poly(N-propargylsulfamides). Macromolecules, 2004, 37, 5538-5543.	4.8	24
188	Dynamically Stable Helices of Poly(N-propargylamides) with Bulky Aliphatic Groups. Macromolecules, 2004, 37, 5149-5154.	4.8	51
189	Flexible, Ultraâ€Light, and 3D Designed Whiteâ€Lightâ€Emitting Nanofiber Aerogel. Advanced Functional Materials, 0, , 2109240.	14.9	5