

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3084062/publications.pdf Version: 2024-02-01

KEVE SUN

#	Article	IF	CITATIONS
1	Dynamic-quenching of a single-photon avalanche photodetector using an adaptive resistive switch. Nature Communications, 2022, 13, 1517.	12.8	5
2	High-performance modified uni-traveling carrier photodiode integrated on a thin-film lithium niobate platform. Photonics Research, 2022, 10, 1338.	7.0	30
3	Frequency behavior of AlInAsSb nBn photodetectors and the development of an equivalent circuit model. Optics Express, 2022, 30, 25262.	3.4	3
4	Towards high-power, high-coherence, integrated photonic mmWave platform with microcavity solitons. Light: Science and Applications, 2021, 10, 4.	16.6	39
5	High-Power <i>V</i> -Band-to- <i>G</i> -Band Photonically Driven Electromagnetic Emitters. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 1474-1487.	4.6	6
6	High-Gain Ka-Band Analog Photonic Link Using High-Power Photodiode at 1064 nm. Journal of Lightwave Technology, 2021, 39, 1724-1732.	4.6	0
7	Germanium Photodiode Arrays on Silicon-On-Insulator With On-Chip Bias Circuit. IEEE Photonics Technology Letters, 2021, 33, 832-835.	2.5	2
8	Room-temperature bandwidth of 2-μm AlInAsSb avalanche photodiodes. Optics Express, 2021, 29, 38939.	3.4	4
9	Optical Generation of Pulsed Microwave Signals with High-Power Photodiodes. , 2020, , .		1
10	Foundry-Enabled Ge Photodiode Arrays on Si on Insulator (SOI) with On-Chip Biasing Circuit. , 2020, , .		0
11	High-Speed Evanescently-Coupled Waveguide Type-II MUTC Photodiodes for Zero-Bias Operation. Journal of Lightwave Technology, 2020, 38, 6827-6832.	4.6	13
12	High-Power and High-Linearity Photodiodes at 1064 nm. Journal of Lightwave Technology, 2020, 38, 4850-4856.	4.6	8
13	Heterogeneous photodiodes on silicon nitride waveguides. Optics Express, 2020, 28, 14824.	3.4	29
14	Efficient absorption enhancement approaches for AlInAsSb avalanche photodiodes for 2-μm applications. Optics Express, 2020, 28, 24379.	3.4	11
15	40  Gbit/s waveguide photodiode using Ill–V on silicon heteroepitaxy. Optics Letters, 2020, 45, 2954.	3.3	14
16	Heterogeneous III-V Photodiodes on Silicon Nitride and Silicon. , 2020, , .		0
17	High-Speed InGaAs/InAlGaAs Waveguide Photodiodes Grown on Silicon by Heteroepitaxy. , 2020, , .		0
18	High-Linearity V-Band InGaAs/InP Photodiodes Working at 1064 nm. , 2020, , .		0

IF # ARTICLE CITATIONS Photonic generation of pulsed microwave signals in the X-, Ku- and K-band. Optics Express, 2020, 28, 28563. High-Speed Integrated Photodiodes., 2019,,. 20 5 High-Speed and High-Power MUTC Photodiode Working at 1064 nm. IEEE Photonics Technology Letters, 2019, 31, 1584-1587. 2.5 Starkâ€Localizationâ€Limited Franz–Keldysh Effect in InAlAs Digital Alloys. Physica Status Solidi - Rapid 22 2.4 2 Research Letters, 2019, 13, 1900272. Foundry-Enabled High-Power Photodetectors for Microwave Photonics. IEEE Journal of Selected 23 Topics in Quantum Electronics, 2019, 25, 1-11. 24 High-Speed Photodetectors for Microwave Photonics. Applied Sciences (Switzerland), 2019, 9, 623. 2.5 42 High-Power Flip-Chip Bonded Photodiode Working at 1064nm., 2019,,. High-Power W-band to G-band Photonically-Driven Electromagnetic Emitter with 8.8 dBm EIRP., 2019,,. 26 1 Ge-on-Si Balanced Periodic Traveling-Wave Photodetector., 2019,,. 28 Triple-mesa avalanche photodiodes with very low surface dark current. Optics Express, 2019, 27, 22923. 3.4 7 III-V on silicon avalanche photodiodes by heteroepitaxy. Optics Letters, 2019, 44, 3538. 3.3 InP/InGaAs Photovaractor. Journal of Lightwave Technology, 2018, 36, 1661-1665. 30 4.6 4 High Power Integrated Photonic W-Band Emitter. IEEE Transactions on Microwave Theory and 4.6 Techniques, 2018, 66, 1668-1677. High Power Integrated 100 GHz Photodetectors., 2018,,. 32 2 Ge-on-Si Waveguide Photodiode Array for High-Power Applications., 2018,,. High-Power Flip-Chip Bonded Modified Uni-Traveling Carrier Photodiodes with â"2.6 dBm RF Output 34 15 Power at 160 GHz., 2018, , . Large-Area High-Power Modified Uni-Traveling Carrier Photodiodes., 2018,,.

 $_{36}$ Zero-Bias GaAsSb/InP Photodiode with 40 GHz Bandwidth. , 2018, , .

0

KEYE SUN

Keye Sun

#	Article	IF	CITATIONS
37	Segmented waveguide photodetector with 90% quantum efficiency. Optics Express, 2018, 26, 12499.	3.4	9
38	Low dark current Ill–V on silicon photodiodes by heteroepitaxy. Optics Express, 2018, 26, 13605.	3.4	36
39	High-Power Evanescently Coupled Waveguide MUTC Photodiode With >105-GHz Bandwidth. Journal of Lightwave Technology, 2017, 35, 4752-4757.	4.6	35
40	Low-dark current III-V photodiodes grown on silicon substrate. , 2017, , .		6
41	High-power waveguide MUTC photodiode with 70 GHz bandwidth. , 2016, , .		4
42	Growth mechanisms and their effects on the opto-electrical properties of CdS thin films prepared by chemical bath deposition. Materials Science in Semiconductor Processing, 2016, 52, 24-31.	4.0	33
43	Pulse Laser Sulfur-Hyperdoping of Germanium and High Quantum Efficiency Photodiodes. IEEE Photonics Journal, 2016, 8, 1-10.	2.0	1,842
44	Design of emitter structures based on resonant perfect absorption for thermophotovoltaic applications. Optics Express, 2015, 23, A1373.	3.4	20
45	Temperature dependent energy levels of methylammonium lead iodide perovskite. Applied Physics Letters, 2015, 106, .	3.3	159
46	Germanium p-n Junctions by Laser Doping for Photonics/Microelectronic Devices. IEEE Photonics Technology Letters, 2014, 26, 1422-1425.	2.5	16