

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3084062/publications.pdf Version: 2024-02-01

KEVE SIIN

#	Article	IF	CITATIONS
1	Pulse Laser Sulfur-Hyperdoping of Germanium and High Quantum Efficiency Photodiodes. IEEE Photonics Journal, 2016, 8, 1-10.	2.0	1,842
2	Temperature dependent energy levels of methylammonium lead iodide perovskite. Applied Physics Letters, 2015, 106, .	3.3	159
3	High-Speed Photodetectors for Microwave Photonics. Applied Sciences (Switzerland), 2019, 9, 623.	2.5	42
4	Towards high-power, high-coherence, integrated photonic mmWave platform with microcavity solitons. Light: Science and Applications, 2021, 10, 4.	16.6	39
5	Low dark current Ill–V on silicon photodiodes by heteroepitaxy. Optics Express, 2018, 26, 13605.	3.4	36
6	High-Power Evanescently Coupled Waveguide MUTC Photodiode With >105-GHz Bandwidth. Journal of Lightwave Technology, 2017, 35, 4752-4757.	4.6	35
7	Growth mechanisms and their effects on the opto-electrical properties of CdS thin films prepared by chemical bath deposition. Materials Science in Semiconductor Processing, 2016, 52, 24-31.	4.0	33
8	High-performance modified uni-traveling carrier photodiode integrated on a thin-film lithium niobate platform. Photonics Research, 2022, 10, 1338.	7.0	30
9	Heterogeneous photodiodes on silicon nitride waveguides. Optics Express, 2020, 28, 14824.	3.4	29
10	Foundry-Enabled High-Power Photodetectors for Microwave Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-11.	2.9	23
11	Design of emitter structures based on resonant perfect absorption for thermophotovoltaic applications. Optics Express, 2015, 23, A1373.	3.4	20
12	III-V on silicon avalanche photodiodes by heteroepitaxy. Optics Letters, 2019, 44, 3538.	3.3	18
13	Germanium p-n Junctions by Laser Doping for Photonics/Microelectronic Devices. IEEE Photonics Technology Letters, 2014, 26, 1422-1425.	2.5	16
14	High-Power Flip-Chip Bonded Modified Uni-Traveling Carrier Photodiodes with â^'2.6 dBm RF Output Power at 160 GHz. , 2018, , .		15
15	40  Gbit/s waveguide photodiode using Ill–V on silicon heteroepitaxy. Optics Letters, 2020, 45, 2954.	3.3	14
16	High-Speed Evanescently-Coupled Waveguide Type-II MUTC Photodiodes for Zero-Bias Operation. Journal of Lightwave Technology, 2020, 38, 6827-6832.	4.6	13
17	Efficient absorption enhancement approaches for AllnAsSb avalanche photodiodes for 2-μm applications. Optics Express, 2020, 28, 24379.	3.4	11
18	High Power Integrated Photonic W-Band Emitter. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 1668-1677.	4.6	10

Keye Sun

#	Article	IF	CITATIONS
19	Segmented waveguide photodetector with 90% quantum efficiency. Optics Express, 2018, 26, 12499.	3.4	9
20	High-Speed and High-Power MUTC Photodiode Working at 1064 nm. IEEE Photonics Technology Letters, 2019, 31, 1584-1587.	2.5	8
21	High-Power and High-Linearity Photodiodes at 1064 nm. Journal of Lightwave Technology, 2020, 38, 4850-4856.	4.6	8
22	Ge-on-Si Waveguide Photodiode Array for High-Power Applications. , 2018, , .		7
23	Triple-mesa avalanche photodiodes with very low surface dark current. Optics Express, 2019, 27, 22923.	3.4	7
24	Low-dark current III-V photodiodes grown on silicon substrate. , 2017, , .		6
25	High-Power <i>V</i> -Band-to- <i>G</i> -Band Photonically Driven Electromagnetic Emitters. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 1474-1487.	4.6	6
26	Photonic generation of pulsed microwave signals in the X-, Ku- and K-band. Optics Express, 2020, 28, 28563.	3.4	6
27	High-Speed Integrated Photodiodes. , 2019, , .		5
28	Dynamic-quenching of a single-photon avalanche photodetector using an adaptive resistive switch. Nature Communications, 2022, 13, 1517.	12.8	5
29	High-power waveguide MUTC photodiode with 70 GHz bandwidth. , 2016, , .		4
30	InP/InGaAs Photovaractor. Journal of Lightwave Technology, 2018, 36, 1661-1665.	4.6	4
31	Room-temperature bandwidth of 2-μm AlInAsSb avalanche photodiodes. Optics Express, 2021, 29, 38939.	3.4	4
32	Ge-on-Si Balanced Periodic Traveling-Wave Photodetector. , 2019, , .		3
33	Frequency behavior of AlInAsSb nBn photodetectors and the development of an equivalent circuit model. Optics Express, 2022, 30, 25262.	3.4	3
34	High Power Integrated 100 GHz Photodetectors. , 2018, , .		2
35	Starkâ€Localizationâ€Limited Franz–Keldysh Effect in InAlAs Digital Alloys. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900272.	2.4	2
36	Germanium Photodiode Arrays on Silicon-On-Insulator With On-Chip Bias Circuit. IEEE Photonics Technology Letters, 2021, 33, 832-835.	2.5	2

Keye Sun

#	Article	IF	CITATIONS
37	Large-Area High-Power Modified Uni-Traveling Carrier Photodiodes. , 2018, , .		1
38	High-Power W-band to G-band Photonically-Driven Electromagnetic Emitter with 8.8 dBm EIRP. , 2019, , .		1
39	Optical Generation of Pulsed Microwave Signals with High-Power Photodiodes. , 2020, , .		1
40	Zero-Bias GaAsSb/InP Photodiode with 40 GHz Bandwidth. , 2018, , .		0
41	High-Power Flip-Chip Bonded Photodiode Working at 1064nm. , 2019, , .		Ο
42	Foundry-Enabled Ge Photodiode Arrays on Si on Insulator (SOI) with On-Chip Biasing Circuit. , 2020, , .		0
43	High-Gain Ka-Band Analog Photonic Link Using High-Power Photodiode at 1064 nm. Journal of Lightwave Technology, 2021, 39, 1724-1732.	4.6	Ο
44	Heterogeneous III-V Photodiodes on Silicon Nitride and Silicon. , 2020, , .		0
45	High-Speed InGaAs/InAlGaAs Waveguide Photodiodes Grown on Silicon by Heteroepitaxy. , 2020, , .		0
46	High-Linearity V-Band InGaAs/InP Photodiodes Working at 1064 nm. , 2020, , .		0