## David J T Sumpter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3083223/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Inferring the rules of interaction of shoaling fish. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18726-18731.                                                | 7.1 | 459       |
| 2  | Quorum decision-making facilitates information transfer in fish shoals. Proceedings of the National<br>Academy of Sciences of the United States of America, 2008, 105, 6948-6953.                            | 7.1 | 395       |
| 3  | Quorum sensing, recruitment, and collective decision-making during colony emigration by the ant Leptothorax albipennis. Behavioral Ecology and Sociobiology, 2002, 52, 117-127.                              | 1.4 | 381       |
| 4  | Fast and accurate decisions through collective vigilance in fish shoals. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2312-2315.                              | 7.1 | 302       |
| 5  | Quorum responses and consensus decision making. Philosophical Transactions of the Royal Society B:<br>Biological Sciences, 2009, 364, 743-753.                                                               | 4.0 | 285       |
| 6  | From Compromise to Leadership in Pigeon Homing. Current Biology, 2006, 16, 2123-2128.                                                                                                                        | 3.9 | 247       |
| 7  | Inherent noise can facilitate coherence in collective swarm motion. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5464-5469.                                   | 7.1 | 240       |
| 8  | Consensus Decision Making by Fish. Current Biology, 2008, 18, 1773-1777.                                                                                                                                     | 3.9 | 231       |
| 9  | The sustainable development oxymoron: quantifying and modelling the incompatibility of sustainable development goals. International Journal of Sustainable Development and World Ecology, 2017, 24, 457-470. | 5.9 | 214       |
| 10 | Visual attention and the acquisition of information in human crowds. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7245-7250.                                  | 7.1 | 174       |
| 11 | Solving the shepherding problem: heuristics for herding autonomous, interacting agents. Journal of the Royal Society Interface, 2014, 11, 20140719.                                                          | 3.4 | 140       |
| 12 | Individual Rules for Trail Pattern Formation in Argentine Ants (Linepithema humile). PLoS<br>Computational Biology, 2012, 8, e1002592.                                                                       | 3.2 | 137       |
| 13 | Information transfer in moving animal groups. Theory in Biosciences, 2008, 127, 177-186.                                                                                                                     | 1.4 | 134       |
| 14 | A tunable algorithm for collective decision-making. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15906-15910.                                                 | 7.1 | 131       |
| 15 | How predation shapes the social interaction rules of shoaling fish. Proceedings of the Royal Society<br>B: Biological Sciences, 2017, 284, 20171126.                                                         | 2.6 | 120       |
| 16 | Initiation and spread of escape waves within animal groups. Royal Society Open Science, 2015, 2, 140355.                                                                                                     | 2.4 | 91        |
| 17 | Moving calls: a vocal mechanism underlying quorum decisions in cohesive groups. Proceedings of the<br>Royal Society B: Biological Sciences, 2011, 278, 1482-1488.                                            | 2.6 | 90        |
| 18 | The modelling cycle for collective animal behaviour. Interface Focus, 2012, 2, 764-773.                                                                                                                      | 3.0 | 90        |

DAVID J T SUMPTER

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Ant colonies outperform individuals when a sensory discrimination task is difficult but not when it<br>is easy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110,<br>13769-13773. | 7.1 | 85        |
| 20 | Interaction rules underlying group decisions in homing pigeons. Journal of the Royal Society Interface, 2013, 10, 20130529.                                                                                                 | 3.4 | 82        |
| 21 | Optimisation in a natural system: Argentine ants solve the Towers of Hanoi. Journal of Experimental<br>Biology, 2011, 214, 50-58.                                                                                           | 1.7 | 81        |
| 22 | Shape and efficiency of wood ant foraging networks. Behavioral Ecology and Sociobiology, 2009, 63, 451-460.                                                                                                                 | 1.4 | 70        |
| 23 | Synergy and Group Size in Microbial Cooperation. American Naturalist, 2012, 180, 296-305.                                                                                                                                   | 2.1 | 69        |
| 24 | Quorum Decision-Making in Foraging Fish Shoals. PLoS ONE, 2012, 7, e32411.                                                                                                                                                  | 2.5 | 65        |
| 25 | Structure and formation of ant transportation networks. Journal of the Royal Society Interface, 2011, 8, 1298-1306.                                                                                                         | 3.4 | 64        |
| 26 | What makes a honeybee scout?. Behavioral Ecology and Sociobiology, 2007, 61, 985-995.                                                                                                                                       | 1.4 | 58        |
| 27 | The dynamics of audience applause. Journal of the Royal Society Interface, 2013, 10, 20130466.                                                                                                                              | 3.4 | 57        |
| 28 | Collective selection of food patches in <i>Drosophila</i> . Journal of Experimental Biology, 2016, 219, 668-675.                                                                                                            | 1.7 | 55        |
| 29 | Bayesian Dynamical Systems Modelling in the Social Sciences. PLoS ONE, 2014, 9, e86468.                                                                                                                                     | 2.5 | 45        |
| 30 | The Dynamics of Democracy, Development and Cultural Values. PLoS ONE, 2014, 9, e97856.                                                                                                                                      | 2.5 | 45        |
| 31 | How dancing honey bees keep track of changes: the role of inspector bees. Behavioral Ecology, 2012, 23, 588-596.                                                                                                            | 2.2 | 44        |
| 32 | Quantifying the structure and dynamics of fish shoals under predation threat in three dimensions.<br>Behavioral Ecology, 2020, 31, 311-321.                                                                                 | 2.2 | 42        |
| 33 | Multi-scale Inference of Interaction Rules in Animal Groups Using Bayesian Model Selection. PLoS<br>Computational Biology, 2013, 9, e1002961.                                                                               | 3.2 | 39        |
| 34 | Understanding Animal Group-Size Distributions. PLoS ONE, 2011, 6, e23438.                                                                                                                                                   | 2.5 | 37        |
| 35 | Emergent Structural Mechanisms for High-Density Collective Motion Inspired by Human Crowds.<br>Physical Review Letters, 2016, 117, 228301.                                                                                  | 7.8 | 35        |
| 36 | The Impact of Human Mobility on HIV Transmission in Kenya. PLoS ONE, 2015, 10, e0142805.                                                                                                                                    | 2.5 | 31        |

DAVID J T SUMPTER

| #  | Article                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Current-reinforced random walks for constructing transport networks. Journal of the Royal Society<br>Interface, 2013, 10, 20120864.                                              | 3.4  | 30        |
| 38 | Local interactions and global properties of wild, free-ranging stickleback shoals. Royal Society Open Science, 2017, 4, 170043.                                                  | 2.4  | 30        |
| 39 | A first principles derivation of animal group size distributions. Journal of Theoretical Biology, 2011, 283, 35-43.                                                              | 1.7  | 28        |
| 40 | Body size affects the strength of social interactions and spatial organization of a schooling fish ( <i>Pseudomugil signifer</i> ). Royal Society Open Science, 2017, 4, 161056. | 2.4  | 28        |
| 41 | Collective Irrationality and Positive Feedback. PLoS ONE, 2011, 6, e18901.                                                                                                       | 2.5  | 27        |
| 42 | Initiators, Leaders, and Recruitment Mechanisms in the Collective Movements of Damselfish. American<br>Naturalist, 2013, 181, 748-760.                                           | 2.1  | 27        |
| 43 | Murmurations. Current Biology, 2012, 22, R112-R114.                                                                                                                              | 3.9  | 26        |
| 44 | Using activity and sociability to characterize collective motion. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170015.                   | 4.0  | 25        |
| 45 | Rapid evolution of coordinated and collective movement in response to artificial selection. Science<br>Advances, 2020, 6, .                                                      | 10.3 | 25        |
| 46 | Phenotypic variability in unicellular organisms: from calcium signalling to social behaviour.<br>Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20152322.   | 2.6  | 24        |
| 47 | Mathematical modeling reveals spontaneous emergence of self-replication in chemical reaction systems. Journal of Biological Chemistry, 2018, 293, 18854-18863.                   | 3.4  | 21        |
| 48 | Six Predictions about the Decision Making of Animal and Human Groups. Managerial and Decision Economics, 2012, 33, 295-309.                                                      | 2.5  | 18        |
| 49 | Symmetry Restoring Bifurcation in Collective Decision-Making. PLoS Computational Biology, 2014, 10, e1003960.                                                                    | 3.2  | 18        |
| 50 | Phenotypic variability predicts decision accuracy in unicellular organisms. Proceedings of the Royal<br>Society B: Biological Sciences, 2019, 286, 20182825.                     | 2.6  | 17        |
| 51 | Flying insect swarms. Current Biology, 2014, 24, R828-R830.                                                                                                                      | 3.9  | 14        |
| 52 | The Dynamics, Causes and Possible Prevention of Hepatitis E Outbreaks. PLoS ONE, 2012, 7, e41135.                                                                                | 2.5  | 13        |
| 53 | Integration of Social Information by Human Groups. Topics in Cognitive Science, 2015, 7, 469-493.                                                                                | 1.9  | 13        |
| 54 | Understanding Democracy and Development Traps Using a Data-Driven Approach. Big Data, 2015, 3, 22-33.                                                                            | 3.4  | 13        |

DAVID J T SUMPTER

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Risk management in spatio-temporally varying field by true slime mold. Nonlinear Theory and Its<br>Applications IEICE, 2010, 1, 26-36.                                                                        | 0.6 | 12        |
| 56 | Group Behaviour: Leadership by Those in Need. Current Biology, 2009, 19, R325-R327.                                                                                                                           | 3.9 | 11        |
| 57 | Identifying Complex Dynamics in Social Systems. Sociological Methods and Research, 2018, 47, 103-135.                                                                                                         | 6.8 | 11        |
| 58 | Brain size does not impact shoaling dynamics in unfamiliar groups of guppies (Poecilia reticulata).<br>Behavioural Processes, 2018, 147, 13-20.                                                               | 1.1 | 11        |
| 59 | Multi-scale Inference of Interaction Rules in Animal Groups Using Bayesian Model Selection. PLoS<br>Computational Biology, 2012, 8, e1002308.                                                                 | 3.2 | 10        |
| 60 | An efficient method for sorting and quantifying individual social traits based on groupâ€level behaviour. Methods in Ecology and Evolution, 2017, 8, 1735-1744.                                               | 5.2 | 8         |
| 61 | Insights into resource consumption, cross-feeding, system collapse, stability and biodiversity from an artificial ecosystem. Journal of the Royal Society Interface, 2017, 14, 20160816.                      | 3.4 | 7         |
| 62 | Is the golden ratio a universal constant for self-replication?. PLoS ONE, 2018, 13, e0200601.                                                                                                                 | 2.5 | 7         |
| 63 | Setting development goals using stochastic dynamical system models. PLoS ONE, 2017, 12, e0171560.                                                                                                             | 2.5 | 7         |
| 64 | Choice modelling with Gaussian processes in the social sciences: A case study of neighbourhood choice in Stockholm. PLoS ONE, 2018, 13, e0206687.                                                             | 2.5 | 5         |
| 65 | EU institutional reforms. Journal of Policy Modeling, 2008, 30, 71-86.                                                                                                                                        | 3.1 | 4         |
| 66 | Using Bayesian dynamical systems, model averaging and neural networks to determine interactions between socio-economic indicators. PLoS ONE, 2018, 13, e0196355.                                              | 2.5 | 4         |
| 67 | Modelling optimal allocation of resources in the context of an incurable disease. PLoS ONE, 2017, 12, e0172401.                                                                                               | 2.5 | 2         |
| 68 | Inferring the dynamics of rising radical right-wing party support using Gaussian processes.<br>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377,<br>20190145. | 3.4 | 2         |
| 69 | Peer selection in EU intergovernmental negotiations. Journal of European Public Policy, 2009, 16, 356-377.                                                                                                    | 4.0 | 1         |
| 70 | Explaining and Predicting the Rise of a Radical Right-Wing Party Using Gaussian Processes. SSRN<br>Electronic Journal, 0, , .                                                                                 | 0.4 | 1         |
| 71 | Tuning positive feedback for signal detection in noisy dynamic environments. Journal of Theoretical Biology, 2012, 309, 88-95.                                                                                | 1.7 | 0         |
| 72 | Last Night in Sweden? Using Gaussian Processes to Study Changing Demographics at the Level of<br>Municipalities. European Journal of Crime, Criminal Law and Criminal Justice, 2020, 28, 46-75.               | 0.2 | 0         |