P P Dijkwel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3080952/publications.pdf

Version: 2024-02-01

		236925	168389
58	3,154	25	53
papers	citations	h-index	g-index
63	63	63	3903
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A mutation in Arabidopsis SAL1 alters its in vitro activity against IP3 and delays developmental leaf senescence in association with lower ROS levels. Plant Molecular Biology, 2022, 108, 549-563.	3.9	5
2	Strigolactones regulate sepal senescence in Arabidopsis. Journal of Experimental Botany, 2021, 72, 5462-5477.	4.8	11
3	Primary metabolic processes as drivers of leaf ageing. Cellular and Molecular Life Sciences, 2021, 78, 6351-6364.	5.4	6
4	<i>Phytophthora agathidicida</i> : research progress, cultural perspectives and knowledge gaps in the control and management of kauri dieback in New Zealand. Plant Pathology, 2020, 69, 3-16.	2.4	48
5	Developmentally controlled changes during Arabidopsis leaf development indicate causes for loss of stress tolerance with age. Journal of Experimental Botany, 2020, 71, 6340-6354.	4.8	18
6	Putative alternative translation start site-encoding nucleotides of CPR5 regulate growth and resistance. BMC Plant Biology, 2020, 20, 295.	3.6	2
7	Functional analysis of RXLR effectors from the New Zealand kauri dieback pathogen <i>Phytophthora agathidicida</i> . Molecular Plant Pathology, 2020, 21, 1131-1148.	4.2	13
8	Conservation and expansion of a necrosisâ€inducing small secreted protein family from hostâ€variable phytopathogens of the Sclerotiniaceae. Molecular Plant Pathology, 2020, 21, 512-526.	4.2	23
9	<i>Camellia</i> Plant Resistance and Susceptibility to Petal Blight Disease Are Defined by the Timing of Defense Responses. Molecular Plant-Microbe Interactions, 2020, 33, 982-995.	2.6	2
10	Genome-Wide Analysis of ROS Antioxidant Genes in Resurrection Species Suggest an Involvement of Distinct ROS Detoxification Systems during Desiccation. International Journal of Molecular Sciences, 2019, 20, 3101.	4.1	34
11	Hypothesis: Plant stem cells hold the key to extreme longevity. Translational Medicine of Aging, 2019, 3, 14-16.	1.3	10
12	Efficient nonenzymatic cyclization and domain shuffling drive pyrrolopyrazine diversity from truncated variants of a fungal NRPS. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25614-25623.	7.1	27
13	Genome draft of the Arabidopsis relative Pachycladon cheesemanii reveals novel strategies to tolerate New Zealand's high ultraviolet B radiation environment. BMC Genomics, 2019, 20, 838.	2.8	9
14	Orthologous peramine and pyrrolopyrazineâ€producing biosynthetic gene clusters in <i>Metarhizium rileyi</i> , <i>Metarhizium majus</i> and <scp><i>Cladonia grayi</i></scp> . Environmental Microbiology, 2019, 21, 928-939.	3.8	6
15	Identification of Postharvest Senescence Regulators Through Map-Based Cloning Using Detached Arabidopsis Inflorescences as a Model Tissue. Methods in Molecular Biology, 2018, 1744, 195-220.	0.9	2
16	<scp>ABA</scp> signalling manipulation suppresses senescence of a leafy vegetable stored at room temperature. Plant Biotechnology Journal, 2018, 16, 530-544.	8.3	23
17	Molecular Mechanisms Preventing Senescence in Response to Prolonged Darkness in a Desiccation-Tolerant Plant. Plant Physiology, 2018, 177, 1319-1338.	4.8	26
18	Droughtâ€induced senescence of <i>Medicago truncatula</i> nodules involves serpin and ferritin to control proteolytic activity and iron levels. New Phytologist, 2018, 220, 196-208.	7.3	28

#	Article	IF	CITATIONS
19	Kunitz Proteinase Inhibitors Limit Water Stress Responses in White Clover (Trifolium repens L.) Plants. Frontiers in Plant Science, 2017, 8, 1683.	3.6	16
20	Arabidopsis AGAMOUS Regulates Sepal Senescence by Driving Jasmonate Production. Frontiers in Plant Science, 2017, 8, 2101.	3.6	20
21	\hat{l}^2 -Substituting alanine synthases: roles in cysteine metabolism and abiotic and biotic stress signalling in plants. Functional Plant Biology, 2016, 43, 307.	2.1	6
22	Redox and hormone profiling of a Nicotiana tabacum dedifferentiated protoplast culture suggests a role for a cytokinin and gibberellin in plant totipotency. Plant Cell, Tissue and Organ Culture, 2016, 124, 295-306.	2.3	9
23	Knockâ€down of transcript abundance of a family of Kunitz proteinase inhibitor genes in white clover () Tj ETQq1 1188-1201.	1 0.78431 7.3	.4 rgBT /O∨ 16
24	Transcription of Biotic Stress Associated Genes in White Clover (Trifolium repens L.) Differs in Response to Cyst and Root-Knot Nematode Infection. PLoS ONE, 2015, 10, e0137981.	2.5	24
25	Staying green postharvest: how three mutations in the <i>Arabidopsis</i> chlorophyll <i>b</i> reductase gene <i>NYC1</i> delay degreening by distinct mechanisms. Journal of Experimental Botany, 2015, 66, 6849-6862.	4.8	29
26	Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Molecular Biology, 2013, 82, 547-561.	3.9	308
27	Activation of <i><scp>R</scp></i> â€mediated innate immunity and disease susceptibility is affected by mutations in a cytosolic <i><scp>O</scp></i> â€acetylserine (thiol) lyase in <scp>A</scp> rabidopsis. Plant Journal, 2013, 73, 118-130.	5.7	36
28	Could ROS signals drive tissue-specific clocks?. Transcription, 2013, 4, 206-208.	3.1	6
29	Ciborinia camelliae (Sclerotiniaceae) Induces Variable Plant Resistance Responses in Selected Species of Camellia. Phytopathology, 2013, 103, 725-732.	2.2	14
30	<i>CIRCADIAN CLOCK-ASSOCIATED 1</i> Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17129-17134.	7.1	336
31	Carbon Deprivation-Driven Transcriptome Reprogramming in Detached Developmentally Arresting Arabidopsis Inflorescences Â. Plant Physiology, 2012, 160, 1357-1372.	4.8	30
32	Positional Information Resolves Structural Variations and Uncovers an Evolutionarily Divergent Genetic Locus in Accessions of Arabidopsis thaliana. Genome Biology and Evolution, 2011, 3, 627-640.	2.5	6
33	A mutation in the cytosolic O-acetylserine (thiol) lyase induces a genome-dependent early leaf death phenotype in Arabidopsis. BMC Plant Biology, 2010, 10, 80.	3.6	21
34	Noncanonical Translation Initiation of the <i> Arabidopsis < /i > Flowering Time and Alternative Polyadenylation Regulator FCA Â. Plant Cell, 2010, 22, 3764-3777.</i>	6.6	33
35	Expression of multiple expansin genes is associated with cell expansion in potato organs. Plant Science, 2010, 179, 77-85.	3.6	25
36	Method for the identification of single mutations in large genomic regions using massive parallel sequencing. Molecular Breeding, 2009, 23, 51-59.	2.1	3

#	Article	IF	CITATIONS
37	Early leaf senescence is associated with an altered cellular redox balance in <i>Arabidopsis cpr5</i> / <i>old1</i> mutants. Plant Biology, 2008, 10, 85-98.	3.8	86
38	CPR5, a Jack of all trades in plants. Plant Signaling and Behavior, 2008, 3, 562-563.	2.4	23
39	Study of Early Leaf Senescence in Arabidopsis thaliana by Quantitative Proteomics Using Reciprocal 14N/15N Labeling and Difference Gel Electrophoresis. Molecular and Cellular Proteomics, 2008, 7, 108-120.	3.8	79
40	The <i> Arabidopsis onset of leaf death 5 < /i > Mutation of Quinolinate Synthase Affects Nicotinamide Adenine Dinucleotide Biosynthesis and Causes Early Ageing. Plant Cell, 2008, 20, 2909-2925.</i>	6.6	106
41	Arabidopsis CPR5 is a senescence-regulatory gene with pleiotropic functions as predicted by the evolutionary theory of senescence. Journal of Experimental Botany, 2007, 58, 3885-3894.	4.8	44
42	Arabidopsis RecQl4A suppresses homologous recombination and modulates DNA damage responses. Plant Journal, 2005, 43, 789-798.	5.7	47
43	Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis. Journal of Experimental Botany, 2005, 56, 2915-2923.	4.8	185
44	RNA processing and Arabidopsis flowering time control. Biochemical Society Transactions, 2004, 32, 565-566.	3.4	28
45	Arabidopsis RecQsim, a plant-specific member of the RecQ helicase family, can suppress the MMS hypersensitivity of the yeast sgs1 mutant. Plant Molecular Biology, 2003, 52, 273-284.	3.9	19
46	Ageing in Plants: Conserved Strategies and Novel Pathways. Plant Biology, 2003, 5, 455-464.	3.8	51
47	FY Is an RNA $3\hat{a}\in^2$ End-Processing Factor that Interacts with FCA to Control the Arabidopsis Floral Transition. Cell, 2003, 113, 777-787.	28.9	399
48	Functional Significance of the Alternative Transcript Processing of the Arabidopsis Floral Promoter FCA. Plant Cell, 2002, 14, 877-888.	6.6	220
49	Arabidopsis onset of leaf deathmutants identify a regulatory pathway controlling leaf senescence. Plant Journal, 2002, 32, 51-63.	5.7	121
50	Molecular Analysis Of Flowering Time And Vernalization Response In Arabidopsis, A Minireview. Developments in Plant Genetics and Breeding, 2000, , 115-121.	0.6	0
51	[12] Analysis of light-regulated gene expression. Methods in Enzymology, 1998, 297, 182-191.	1.0	0
52	Sucrose control of phytochrome A signaling in Arabidopsis Plant Cell, 1997, 9, 583-595.	6.6	197
53	Sucrose Control of Phytochrome A Signaling in Arabidopsis. Plant Cell, 1997, 9, 583.	6.6	34
54	An Arabidopsis mutant showing reduced feedback inhibition of photosynthesis. Plant Journal, 1997, 12, 1011-1020.	5.7	46

P P DIJKWEL

#	Article	IF	CITATION
55	Sucrose Represses the Developmentally Controlled Transient Activation of the Plastocyanin Gene in Arabidopsis thaliana Seedlings. Plant Physiology, 1996, 110, 455-463.	4.8	68
56	Characterization of theAc/Ds behaviour in transgenic tomato plants using plasmid rescue. Plant Molecular Biology, 1992, 20, 61-70.	3.9	40
57	Developmental and Hormonal Control of Leaf Senescence. , 0, , 145-170.		71
58	The secreted proteome of necrotrophic Ciborinia camelliae causes nonâ€hostâ€specific virulence. Plant Pathology, 0, , .	2.4	1