Olivier J Rouxel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3080475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iron Formation: The Sedimentary Product of a Complex Interplay among Mantle, Tectonic, Oceanic, and Biospheric Processes. Economic Geology, 2010, 105, 467-508.	3.8	752
2	Iron Isotope Constraints on the Archean and Paleoproterozoic Ocean Redox State. Science, 2005, 307, 1088-1091.	12.6	457
3	Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nature Geoscience, 2014, 7, 283-286.	12.9	444
4	Rare Earth Element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition. Geochimica Et Cosmochimica Acta, 2010, 74, 6387-6405.	3.9	373
5	The evolution of the marine phosphate reservoir. Nature, 2010, 467, 1088-1090.	27.8	361
6	Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event. Nature, 2011, 478, 369-373.	27.8	299
7	Metal Stable Isotopes in Paleoceanography. Annual Review of Earth and Planetary Sciences, 2007, 35, 717-746.	11.0	293
8	Mass spectrometry and natural variations of iron isotopes. Mass Spectrometry Reviews, 2006, 25, 515-550.	5.4	261
9	Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA. Earth and Planetary Science Letters, 2007, 255, 243-256.	4.4	228
10	Iron isotope fractionation during oceanic crust alteration. Chemical Geology, 2003, 202, 155-182.	3.3	219
11	Evidence for Microbial Carbon and Sulfur Cycling in Deeply Buried Ridge Flank Basalt. Science, 2013, 339, 1305-1308.	12.6	210
12	Iron Isotope Systematics. Reviews in Mineralogy and Geochemistry, 2017, 82, 415-510.	4.8	205
13	Subsurface processes at the lucky strike hydrothermal field, Mid-Atlantic ridge: evidence from sulfur, selenium, and iron isotopes. Geochimica Et Cosmochimica Acta, 2004, 68, 2295-2311.	3.9	200
14	Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume. Nature Geoscience, 2009, 2, 197-201.	12.9	200
15	Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9–10°N. Chemical Geology, 2008, 252, 214-227.	3.3	199
16	S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides. Geochimica Et Cosmochimica Acta, 2007, 71, 1170-1182.	3.9	184
17	Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans. Earth and Planetary Science Letters, 2009, 286, 230-242.	4.4	166
18	Atmospheric Sulfur in Archean Komatiite-Hosted Nickel Deposits. Science, 2009, 326, 1086-1089.	12.6	152

#	Article	IF	CITATIONS
19	Iron isotope composition of some Archean and Proterozoic iron formations. Geochimica Et Cosmochimica Acta, 2012, 80, 158-169.	3.9	147
20	Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys. Earth and Planetary Science Letters, 2008, 269, 17-28.	4.4	143
21	Sulfur isotope measurement of sulfate and sulfide by high-resolution MC-ICP-MS. Chemical Geology, 2008, 253, 102-113.	3.3	143
22	Natural variations of Se isotopic composition determined by hydride generation multiple collector inductively coupled plasma mass spectrometry. Geochimica Et Cosmochimica Acta, 2002, 66, 3191-3199.	3.9	138
23	Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea: Indicators of sub-seafloor hydrothermal processes in back-arc basins. Geochimica Et Cosmochimica Acta, 2010, 74, 5494-5513.	3.9	137
24	Coupled molybdenum, iron and uranium stable isotopes as oceanic paleoredox proxies during the Paleoproterozoic Shunga Event. Chemical Geology, 2013, 362, 193-210.	3.3	129
25	Reviews and syntheses: The biogeochemical cycle of silicon in the modern ocean. Biogeosciences, 2021, 18, 1269-1289.	3.3	124
26	Multiple sulphur and iron isotope composition of detrital pyrite in Archaean sedimentary rocks: A new tool for provenance analysis. Earth and Planetary Science Letters, 2009, 286, 436-445.	4.4	113
27	Oxygen dynamics in the aftermath of the Great Oxidation of Earth's atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16736-16741.	7.1	112
28	Copper Isotope Systematics of the Lucky Strike, Rainbow, and Logatchev Sea-Floor Hydrothermal Fields on the Mid-Atlantic Ridge. Economic Geology, 2004, 99, 585-600.	3.8	110
29	Natural Cadmium Isotopic Variations in Eight Geological Reference Materials (NIST SRM 2711, BCR 176,) Tj ETQq1 Geostandards and Geoanalytical Research, 2005, 29, 95-106.	1 0.7843 1.9	14 rgBT /0 105
30	lron isotope fractionation in subterranean estuaries. Geochimica Et Cosmochimica Acta, 2008, 72, 3413-3430.	3.9	105
31	Iron isotope fractionation in a buoyant hydrothermal plume, 5°S Mid-Atlantic Ridge. Geochimica Et Cosmochimica Acta, 2009, 73, 5619-5634.	3.9	100
32	Antimony isotope variations in natural systems and implications for their use as geochemical tracers. Chemical Geology, 2003, 200, 25-40.	3.3	98
33	Surface-Generated Mesoscale Eddies Transport Deep-Sea Products from Hydrothermal Vents. Science, 2011, 332, 580-583.	12.6	98
34	GEOTRACES IC1 (BATS) contaminationâ€prone trace element isotopes Cd, Fe, Pb, Zn, Cu, and Mo intercalibration. Limnology and Oceanography: Methods, 2012, 10, 653-665.	2.0	98
35	Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii. ISME Journal, 2011, 5, 1748-1758.	9.8	97
36	Oxygen consumption rates in subseafloor basaltic crust derived from a reaction transport model. Nature Communications, 2013, 4, 2539.	12.8	96

#	Article	IF	CITATIONS
37	Cobalt and marine redox evolution. Earth and Planetary Science Letters, 2014, 390, 253-263.	4.4	95
38	Nickel Isotope Variations in Terrestrial Silicate Rocks and Geological Reference Materials Measured by <scp>MC</scp> â€ <scp>ICP</scp> â€ <scp>MS</scp> . Geostandards and Geoanalytical Research, 2013, 37, 297-317.	3.1	91
39	Uranium in iron formations and the rise of atmospheric oxygen. Chemical Geology, 2013, 362, 82-90.	3.3	91
40	Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: A new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit. Geophysical Monograph Series, 2010, , 321-367.	0.1	89
41	Sulfur isotope evidence for microbial sulfate reduction in altered oceanic basalts at ODP Site 801. Earth and Planetary Science Letters, 2008, 268, 110-123.	4.4	86
42	Coupled Fe and S isotope variations in pyrite nodules from Archean shale. Earth and Planetary Science Letters, 2014, 392, 67-79.	4.4	86
43	Inter-calibration of a proposed new primary reference standard AA-ETH Zn for zinc isotopic analysis. Journal of Analytical Atomic Spectrometry, 2017, 32, 415-419.	3.0	86
44	Iron isotope systematics in estuaries: The case of North River, Massachusetts (USA). Geochimica Et Cosmochimica Acta, 2009, 73, 4045-4059.	3.9	85
45	Nickel isotope fractionation during tropical weathering of ultramafic rocks. Chemical Geology, 2015, 402, 68-76.	3.3	83
46	Sulfur-33 constraints on the origin of secondary pyrite in altered oceanic basement. Geochimica Et Cosmochimica Acta, 2012, 87, 323-340.	3.9	80
47	Germanium isotopic variations in igneous rocks and marine sediments. Geochimica Et Cosmochimica Acta, 2006, 70, 3387-3400.	3.9	77
48	Redox Speciation and Distribution within Diverse Iron-dominated Microbial Habitats at Loihi Seamount. Geomicrobiology Journal, 2009, 26, 606-622.	2.0	77
49	Multiple Sulfur and Iron Isotope Composition of Magmatic Ni-Cu-(PGE) Sulfide Mineralization from Eastern Botswana. Economic Geology, 2012, 107, 105-116.	3.8	71
50	Dissolved and particulate organic carbon in hydrothermal plumes from the East Pacific Rise, 9°50′N. Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58, 922-931.	1.4	65
51	Glacial influence on the geochemistry of riverine iron fluxes to the Gulf of Alaska and effects of deglaciation. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	60
52	Total dissolvable and dissolved iron isotopes in the water column of the Peru upwelling regime. Geochimica Et Cosmochimica Acta, 2015, 162, 66-82.	3.9	60
53	Comparing orthomagmatic and hydrothermal mineralization models for komatiite-hosted nickel deposits in Zimbabwe using multiple-sulfur, iron, and nickel isotope data. Mineralium Deposita, 2014, 49, 75-100.	4.1	56
54	The Joffre banded iron formation, Hamersley Group, Western Australia: Assessing the palaeoenvironment through detailed petrology and chemostratigraphy. Precambrian Research, 2016, 273, 12-37.	2.7	55

#	Article	IF	CITATIONS
55	Timeâ€series analysis of two hydrothermal plumes at 9°50′N East Pacific Rise reveals distinct, heterogeneous bacterial populations. Geobiology, 2012, 10, 178-192.	2.4	54
56	Pleistocene recycling of copper at a porphyry system, Atacama Desert, Chile: Cu isotope evidence. Mineralium Deposita, 2011, 46, 1-7.	4.1	53
57	The 2.1 Ga Old Francevillian Biota: Biogenicity, Taphonomy and Biodiversity. PLoS ONE, 2014, 9, e99438.	2.5	53
58	Geochemistry and iron isotope systematics of hydrothermal plume fall-out at East Pacific Rise 9°50â€2N. Chemical Geology, 2016, 441, 212-234.	3.3	53
59	Geochemical and iron isotopic insights into hydrothermal iron oxyhydroxide deposit formation at Loihi Seamount. Geochimica Et Cosmochimica Acta, 2018, 220, 449-482.	3.9	51
60	Variable Ni isotope fractionation between Fe-oxyhydroxides and implications for the use of Ni isotopes as geochemical tracers. Chemical Geology, 2018, 481, 38-52.	3.3	47
61	Early stages of core segregation recorded by Fe isotopes in an asteroidal mantle. Earth and Planetary Science Letters, 2015, 419, 93-100.	4.4	44
62	Measuring the Form of Iron in Hydrothermal Plume Particles. Oceanography, 2012, 25, 209-212.	1.0	43
63	Coupled Ge/Si and Ge isotope ratios as geochemical tracers of seafloor hydrothermal systems: Case studies at Loihi Seamount and East Pacific Rise 9°50′N. Geochimica Et Cosmochimica Acta, 2015, 167, 93-112.	3.9	43
64	Comparative geochemistry of four ferromanganese crusts from the Pacific Ocean and significance for the use of Ni isotopes as paleoceanographic tracers. Geochimica Et Cosmochimica Acta, 2016, 189, 214-235.	3.9	40
65	Iron Isotope Variations in Coastal Seawater Determined by Multicollector ICPâ€MS. Geostandards and Geoanalytical Research, 2010, 34, 135-144.	3.1	39
66	Iron isotope systematics in Arctic rivers. Comptes Rendus - Geoscience, 2015, 347, 377-385.	1.2	36
67	Germanium Isotope Geochemistry. Reviews in Mineralogy and Geochemistry, 2017, 82, 601-656.	4.8	36
68	Determination of the copper isotope composition of seawater revisited: A case study from the Mediterranean Sea. Chemical Geology, 2019, 511, 465-480.	3.3	36
69	An Intercomparison Study of the Germanium Isotope Composition of Geological Reference Materials. Geostandards and Geoanalytical Research, 2012, 36, 149-159.	3.1	35
70	lron mineral structure, reactivity, and isotopic composition in a South Pacific Gyre ferromanganese nodule over 4 Ma. Geochimica Et Cosmochimica Acta, 2015, 171, 61-79.	3.9	32
71	Molybdenum record from black shales indicates oscillating atmospheric oxygen levels in the early Paleoproterozoic. Numerische Mathematik, 2018, 318, 275-299.	1.4	31
72	The Role of Paragneiss Assimilation in the Origin of the Voisey's Bay Ni-Cu Sulfide Deposit, Labrador: Multiple S and Fe Isotope Evidence. Economic Geology, 2013, 108, 1459-1469.	3.8	30

#	Article	IF	CITATIONS
73	Native Cu from the oceanic crust: Isotopic insights into native metal origin. Chemical Geology, 2013, 359, 136-149.	3.3	28
74	Origin of red beds in the Paleoproterozoic Franceville Basin, Gabon, and implications for sandstone-hosted uranium mineralization. Numerische Mathematik, 2016, 316, 839-872.	1.4	28
75	Microbial colonization of basaltic glasses in hydrothermal organic-rich sediments at Guaymas Basin. Frontiers in Microbiology, 2013, 4, 250.	3.5	27
76	Ge and Si isotope signatures in rivers: A quantitative multi-proxy approach. Earth and Planetary Science Letters, 2018, 503, 194-215.	4.4	27
77	Re–Os results from ODP Site 801: Evidence for extensive Re uptake during alteration of oceanic crust. Chemical Geology, 2008, 248, 256-271.	3.3	25
78	Hydrogen and copper isotope analysis of turquoise by SIMS: calibration and matrix effects. Chemical Geology, 2015, 395, 41-49.	3.3	22
79	Tracing sources of crustal contamination using multiple S and Fe isotopes in the Hart komatiite-associated Ni–Cu–PGE sulfide deposit, Abitibi greenstone belt, Ontario, Canada. Mineralium Deposita, 2016, 51, 919-935.	4.1	22
80	Large nickel isotope fractionation caused by surface complexation reactions with hexagonal birnessite. Chemical Geology, 2020, 537, 119481.	3.3	22
81	A late Paleoproterozoic (1.74ÂGa) deepâ€sea, lowâ€ŧemperature, ironâ€oxidizing microbial hydrothermal vent community from Arizona, USA. Geobiology, 2021, 19, 228-249.	2.4	22
82	Pyrococcus kukulkanii sp. nov., a hyperthermophilic, piezophilic archaeon isolated from a deep-sea hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 3142-3149.	1.7	22
83	Iron isotope fractionation in a sulfide-bearing subterranean estuary and its potential influence on oceanic Fe isotope flux. Chemical Geology, 2012, 300-301, 133-142.	3.3	21
84	Enargite-luzonite hydrothermal vents in Manus Back-Arc Basin: submarine analogues of high-sulfidation epithermal mineralization. Chemical Geology, 2016, 438, 36-57.	3.3	21
85	IRON FORMATION: THE SEDIMENTARY PRODUCT OF A COMPLEX INTERPLAY AMONG MANTLE, TECTONIC, OCEANIC, AND BIOSPHERIC PROCESSESA REPLY. Economic Geology, 2012, 107, 379-380.	3.8	20
86	Biogeochemical insights into microbe–mineral–fluid interactions in hydrothermal chimneys using enrichment culture. Extremophiles, 2015, 19, 597-617.	2.3	20
87	Iron Transformation Pathways and Redox Micro-Environments in Seafloor Sulfide-Mineral Deposits: Spatially Resolved Fe XAS and δ57/54Fe Observations. Frontiers in Microbiology, 2016, 7, 648.	3.5	20
88	The isotope composition of inorganic germanium in seawater and deep sea sponges. Geochimica Et Cosmochimica Acta, 2017, 212, 99-118.	3.9	19
89	Iron isotope fractionation in iron-organic matter associations: Experimental evidence using filtration and ultrafiltration. Geochimica Et Cosmochimica Acta, 2019, 250, 98-116.	3.9	19
90	Triple iron isotope constraints on the role of ocean iron sinks in early atmospheric oxygenation. Science, 2020, 370, 446-449.	12.6	19

#	Article	IF	CITATIONS
91	Trace element proxies of seafloor hydrothermal fluids based on secondary ion mass spectrometry (SIMS) of black smoker chimney linings. Geochimica Et Cosmochimica Acta, 2020, 269, 346-375.	3.9	13
92	Depositional setting of the Late Archean Fe oxide- and sulfide-bearing chert and graphitic argillite in the Shaw Dome, Abitibi greenstone belt, Canada. Precambrian Research, 2018, 311, 98-116.	2.7	12
93	Ge and Si Isotope Behavior During Intense Tropical Weathering and Ecosystem Cycling. Global Biogeochemical Cycles, 2020, 34, e2019GB006522.	4.9	12
94	Origin of the Oligocene manganese deposit at Obrochishte (Bulgaria): Insights from C, O, Fe, Sr, Nd, and Pb isotopes. Ore Geology Reviews, 2020, 122, 103550.	2.7	12
95	Sulfur and strontium isotopic study of epithermal mineralization: A case study from the SE Afar Rift, Djibouti. Ore Geology Reviews, 2017, 81, 358-368.	2.7	10
96	The Nickel isotope composition of the authigenic sink and the diagenetic flux in modern oceans. Chemical Geology, 2021, 563, 120050.	3.3	9
97	Mn-micronodules from the sediments of the Clarion-Clipperton zone (Pacific Ocean): Origin, elemental source, and Fe-Cu-Zn-isotope composition. Chemical Geology, 2021, 580, 120388.	3.3	9
98	Active hydrothermal vents in the Woodlark Basin may act as dispersing centres for hydrothermal fauna. Communications Earth & Environment, 2022, 3, .	6.8	9
99	A First Look at Dissolved Ge Isotopes in Marine Sediments. Frontiers in Earth Science, 2019, 7, .	1.8	8
100	Nickel isotopes and rare earth elements systematics in marine hydrogenetic and hydrothermal ferromanganese deposits. Chemical Geology, 2021, 560, 119999.	3.3	8
101	Nickel and Chromium Stable Isotopic Composition of Ureilites: Implications for the Earth's Core Formation and Differentiation of the Ureilite Parent Body. Geophysical Research Letters, 2022, 49, .	4.0	8
102	Germanium isotopic systematics in Ge-rich coal from the Lincang Ge deposit, Yunnan, Southwestern China. Chemical Geology, 2011, , .	3.3	7
103	11 Iron Isotope Systematics. , 2017, , 415-510.		7
104	More than redox, biological organic ligands control iron isotope fractionation in the riparian wetland. Scientific Reports, 2021, 11, 1933.	3.3	5
105	Extending the dataset of fluid geochemistry of the Menez Gwen, Lucky Strike, Rainbow, TAG and Snake Pit hydrothermal vent fields: Investigation of temporal stability and organic contribution. Deep-Sea Research Part I: Oceanographic Research Papers, 2022, 179, 103630.	1.4	5
106	Ni isotope fractionation during coprecipitation of Fe(III)(oxyhydr)oxides in Si solutions. Chemie Der Erde, 2021, 81, 125714.	2.0	4
107	Early Neoproterozoic oxygenation dynamics along the northern margin of the West African Craton, Anti-Atlas Mountains, Morocco. Chemical Geology, 2021, 581, 120404.	3.3	3
108	Light Zn and Cu isotope compositions recorded in ferromanganese crusts during the Cenozoic as evidence for hydrothermal inputs in South Pacific deep seawater. Geochimica Et Cosmochimica Acta, 2022, 333, 136-152.	3.9	3

#	Article	IF	CITATIONS
109	Advances in experimental and theoretical isotope geochemistry. Chemical Geology, 2009, 267, 109-110.	3.3	2
110	δ60Ni and δ13C Composition of Serpentinites and Carbonates of the Tekirova Ophiolite, Turkey, and Meatiq Ophiolite, Egypt. Frontiers in Earth Science, 2021, 9, .	1.8	2
111	7.10 Chemical Characteristics of Sediments and Seawater. Frontiers in Earth Sciences, 2013, , 1457-1514.	0.1	1
112	14 Germanium Isotope Geochemistry. , 2017, , .		1
113	Does ultrafiltration kinetics bias iron isotope compositions?. Chemical Geology, 2021, 566, 120082.	3.3	1
114	Ge/Si and Ge Isotope Fractionation During Glacial and Non-glacial Weathering: Field and Experimental Data From West Greenland. Frontiers in Earth Science, 2021, 9, .	1.8	0