Serena Barral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3080080/publications.pdf Version: 2024-02-01

SEDENIA RADDAL

#	Article	IF	CITATIONS
1	Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia. Nature Genetics, 2017, 49, 223-237.	21.4	186
2	Neuronal DNA content variation (DCV) with regional and individual differences in the human brain. Journal of Comparative Neurology, 2010, 518, 3981-4000.	1.6	88
3	Aneuploid mosaicism in the developing and adult cerebellar cortex. Journal of Comparative Neurology, 2008, 507, 1944-1951.	1.6	77
4	Isolation and characterization of living primary astroglial cells using the new GLASTâ€specific monoclonal antibody ACSAâ€1. Glia, 2012, 60, 894-907.	4.9	61
5	Aneuploid Cells Are Differentially Susceptible to Caspase-Mediated Death during Embryonic Cerebral Cortical Development. Journal of Neuroscience, 2012, 32, 16213-16222.	3.6	58
6	The role of manganese dysregulation in neurological disease: emerging evidence. Lancet Neurology, The, 2021, 20, 956-968.	10.2	51
7	A Reevaluation of Tetraploidy in the Alzheimer's Disease Brain. Neurodegenerative Diseases, 2009, 6, 221-229.	1.4	41
8	IAP-Based Cell Sorting Results in Homogeneous Transplantable Dopaminergic Precursor Cells Derived from Human Pluripotent Stem Cells. Stem Cell Reports, 2017, 9, 1207-1220.	4.8	40
9	Phosphorylation of Histone H2AX in the Mouse Brain from Development to Senescence. International Journal of Molecular Sciences, 2014, 15, 1554-1573.	4.1	33
10	miR-200 family controls late steps of postnatal forebrain neurogenesis via Zeb2 inhibition. Scientific Reports, 2016, 6, 35729.	3.3	31
11	Interaction Between TRPC Channel Subunits in Endothelial Cells. Journal of Receptor and Signal Transduction Research, 2006, 26, 225-240.	2.5	29
12	Utility of Induced Pluripotent Stem Cells for the Study and Treatment of Genetic Diseases: Focus on Childhood Neurological Disorders. Frontiers in Molecular Neuroscience, 2016, 9, 78.	2.9	29
13	Gene therapy restores dopamine transporter expression and ameliorates pathology in iPSC and mouse models of infantile parkinsonism. Science Translational Medicine, 2021, 13, .	12.4	25
14	Genome Editing in iPSC-Based Neural Systems: From Disease Models to Future Therapeutic Strategies. Frontiers in Genome Editing, 2021, 3, 630600.	5.2	22
15	Aromatic <scp>l</scp> -amino acid decarboxylase deficiency: a patient-derived neuronal model for precision therapies. Brain, 2021, 144, 2443-2456.	7.6	16
16	Efficient neuronal in vitro and in vivo differentiation after immunomagnetic purification of mESC derived neuronal precursors. Stem Cell Research, 2013, 10, 133-146.	0.7	12
17	Electrophysiological Properties of Human Cortical Organoids: Current State of the Art and Future Directions. Frontiers in Molecular Neuroscience, 2022, 15, 839366.	2.9	3