
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3080002/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | SARS-CoV-2 Susceptibility and ACE2 Gene Variations Within Diverse Ethnic Backgrounds. Frontiers in Genetics, 2022, 13, 888025.                                                                                               | 2.3  | 14        |
| 2  | Phenotypic drug discovery: recent successes, lessons learned and new directions. Nature Reviews<br>Drug Discovery, 2022, 21, 899-914.                                                                                        | 46.4 | 81        |
| 3  | Repurposing drugs to treat cardiovascular disease in the era of precision medicine. Nature Reviews<br>Cardiology, 2022, 19, 751-764.                                                                                         | 13.7 | 29        |
| 4  | Serine biosynthesis as a novel therapeutic target for dilated cardiomyopathy. European Heart Journal, 2022, 43, 3477-3489.                                                                                                   | 2.2  | 23        |
| 5  | Reengineering Ponatinib to Minimize Cardiovascular Toxicity. Cancer Research, 2022, 82, 2777-2791.                                                                                                                           | 0.9  | 7         |
| 6  | CRISPR/Cas9-based targeting of fluorescent reporters to human iPSCs to isolate atrial and ventricular-specific cardiomyocytes. Scientific Reports, 2021, 11, 3026.                                                           | 3.3  | 18        |
| 7  | Temporal mechanisms of myogenic specification in human induced pluripotent stem cells. Science<br>Advances, 2021, 7, .                                                                                                       | 10.3 | 3         |
| 8  | miR-106a–363 cluster in extracellular vesicles promotes endogenous myocardial repair via Notch3<br>pathway in ischemic heart injury. Basic Research in Cardiology, 2021, 116, 19.                                            | 5.9  | 34        |
| 9  | miR-132/212 Impairs Cardiomyocytes Contractility in the Failing Heart by Suppressing SERCA2a. Frontiers in Cardiovascular Medicine, 2021, 8, 592362.                                                                         | 2.4  | 16        |
| 10 | Human iPSC modeling of heart disease for drug development. Cell Chemical Biology, 2021, 28, 271-282.                                                                                                                         | 5.2  | 21        |
| 11 | Antiarrhythmic Hit to Lead Refinement in a Dish Using Patient-Derived iPSC Cardiomyocytes. Journal of<br>Medicinal Chemistry, 2021, 64, 5384-5403.                                                                           | 6.4  | 8         |
| 12 | Small-molecule probe reveals a kinase cascade that links stress signaling to TCF/LEF and Wnt responsiveness. Cell Chemical Biology, 2021, 28, 625-635.e5.                                                                    | 5.2  | 5         |
| 13 | Myocardial hypoxic stress mediates functional cardiac extracellular vesicle release. European Heart<br>Journal, 2021, 42, 2780-2792.                                                                                         | 2.2  | 32        |
| 14 | Mapping genetic variability in mature miRNAs and miRNA binding sites in prostate cancer. Journal of<br>Human Genetics, 2021, 66, 1127-1137.                                                                                  | 2.3  | 5         |
| 15 | Humanâ€induced pluripotent stem cellâ€derived cardiomyocytes: Cardiovascular properties and<br>metabolism and pharmacokinetics of deuterated mexiletine analogs. Pharmacology Research and<br>Perspectives, 2021, 9, e00828. | 2.4  | 3         |
| 16 | The Present and Future of Mitochondrial-Based Therapeutics for Eye Disease. Translational Vision<br>Science and Technology, 2021, 10, 4.                                                                                     | 2.2  | 7         |
| 17 | Unfolded Protein Response as a Compensatory Mechanism and Potential Therapeutic Target in PLN R14del Cardiomyopathy. Circulation, 2021, 144, 382-392.                                                                        | 1.6  | 32        |
| 18 | Human iPSC-derived cardiomyocytes and pyridyl-phenyl mexiletine analogs. Bioorganic and Medicinal<br>Chemistry Letters, 2021, 46, 128162.                                                                                    | 2.2  | 5         |

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Highlights from Stanford Drug Discovery Symposium 2021. Cardiovascular Research, 2021, 117, e132-e134.                                                                                                 | 3.8  | 0         |
| 20 | Mitochondria-Rich Extracellular Vesicles Rescue Patient-Specific Cardiomyocytes From Doxorubicin<br>Injury. JACC: CardioOncology, 2021, 3, 428-440.                                                    | 4.0  | 42        |
| 21 | Cardiomyocyte Na+ and Ca2+ mishandling drives vicious cycle involving CaMKII, ROS, and ryanodine receptors. Basic Research in Cardiology, 2021, 116, 58.                                               | 5.9  | 33        |
| 22 | Reengineering an Antiarrhythmic Drug Using Patient hiPSC Cardiomyocytes to Improve Therapeutic<br>Potential and Reduce Toxicity. Cell Stem Cell, 2020, 27, 813-821.e6.                                 | 11.1 | 33        |
| 23 | Patient-Specific Induced Pluripotent Stem Cells Implicate Intrinsic Impaired Contractility in Hypoplastic Left Heart Syndrome. Circulation, 2020, 142, 1605-1608.                                      | 1.6  | 33        |
| 24 | iPSC Modeling of RBM20-Deficient DCM Identifies Upregulation of RBM20 as a Therapeutic Strategy.<br>Cell Reports, 2020, 32, 108117.                                                                    | 6.4  | 40        |
| 25 | Metabolic Maturation Media Improve Physiological Function of Human iPSC-Derived Cardiomyocytes.<br>Cell Reports, 2020, 32, 107925.                                                                     | 6.4  | 198       |
| 26 | A Novel Recessive Mutation in SPEG Causes Early Onset Dilated Cardiomyopathy. PLoS Genetics, 2020,<br>16, e1009000.                                                                                    | 3.5  | 25        |
| 27 | Hyperglycemia Acutely Increases Cytosolic Reactive Oxygen Species via <i>O</i> -linked GlcNAcylation<br>and CaMKII Activation in Mouse Ventricular Myocytes. Circulation Research, 2020, 126, e80-e96. | 4.5  | 82        |
| 28 | Contacts between CMOS circuits and cell membrane by silicon nanowires. , 2020, , .                                                                                                                     |      | 0         |
| 29 | A Novel Recessive Mutation in SPEG Causes Early Onset Dilated Cardiomyopathy. , 2020, 16, e1009000.                                                                                                    |      | 0         |
| 30 | A Novel Recessive Mutation in SPEG Causes Early Onset Dilated Cardiomyopathy. , 2020, 16, e1009000.                                                                                                    |      | 0         |
| 31 | A Novel Recessive Mutation in SPEG Causes Early Onset Dilated Cardiomyopathy. , 2020, 16, e1009000.                                                                                                    |      | 0         |
| 32 | A Novel Recessive Mutation in SPEG Causes Early Onset Dilated Cardiomyopathy. , 2020, 16, e1009000.                                                                                                    |      | 0         |
| 33 | Disruption of NOTCH signaling by a small molecule inhibitor of the transcription factor RBPJ.<br>Scientific Reports, 2019, 9, 10811.                                                                   | 3.3  | 40        |
| 34 | Small-Molecule Modulation of TDP-43 Recruitment to Stress Granules Prevents Persistent TDP-43 Accumulation in ALS/FTD. Neuron, 2019, 103, 802-819.e11.                                                 | 8.1  | 161       |
| 35 | Stars in the Night Sky: iPSC-Cardiomyocytes Return the Patient Context to Drug Screening. Cell Stem<br>Cell, 2019, 24, 506-507.                                                                        | 11.1 | 11        |
| 36 | Crataegus Extract WS®1442 Stimulates Cardiomyogenesis and Angiogenesis From Stem Cells: A<br>Possible New Pharmacology for Hawthorn?. Frontiers in Pharmacology, 2019, 10, 1357.                       | 3.5  | 11        |

| #  | Article                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | AlleleProfileR: A versatile tool to identify and profile sequence variants in edited genomes. PLoS ONE, 2019, 14, e0226694.                                             | 2.5  | 5         |
| 38 | A Premature Termination Codon Mutation in MYBPC3 Causes Hypertrophic Cardiomyopathy via Chronic Activation of Nonsense-Mediated Decay. Circulation, 2019, 139, 799-811. | 1.6  | 91        |
| 39 | Phenotypic Screening of iPSC-Derived Cardiomyocytes for Cardiotoxicity Testing and Therapeutic Target Discovery. , 2019, , 19-34.                                       |      | 1         |
| 40 | Delineating the Link Between Dilated Cardiomyopathy and Arrhythmogenic Symptoms. FASEB Journal, 2019, 33, lb338.                                                        | 0.5  | 0         |
| 41 | miR-25 Tough Decoy Enhances Cardiac Function in Heart Failure. Molecular Therapy, 2018, 26, 718-729.                                                                    | 8.2  | 35        |
| 42 | Use of human induced pluripotent stem cell–derived cardiomyocytes to assess drug cardiotoxicity.<br>Nature Protocols, 2018, 13, 3018-3041.                              | 12.0 | 102       |
| 43 | b-Annulated 1,4-dihydropyridines as Notch inhibitors. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3363-3367.                                                  | 2.2  | 11        |
| 44 | Using iPSC Models to Probe Regulation of Cardiac Ion Channel Function. Current Cardiology Reports, 2018, 20, 57.                                                        | 2.9  | 6         |
| 45 | miRNAs that Induce Human Cardiomyocyte Proliferation Converge on the Hippo Pathway. Cell Reports, 2018, 23, 2168-2174.                                                  | 6.4  | 73        |
| 46 | Will iPSC-cardiomyocytes revolutionize the discovery of drugs for heart disease?. Current Opinion in Pharmacology, 2018, 42, 55-61.                                     | 3.5  | 19        |
| 47 | Novel tertiary sulfonamides as potent anti-cancer agents. Bioorganic and Medicinal Chemistry, 2018, 26, 4441-4451.                                                      | 3.0  | 24        |
| 48 | A Novel Inhibitor Targets Both Wnt Signaling and ATM/p53 in Colorectal Cancer. Cancer Research, 2018, 78, 5072-5083.                                                    | 0.9  | 22        |
| 49 | Abstract 17056: High-Throughput Physiological Assay for Force and Stiffness Quantification in IPS<br>Derived Cardiomyocytes. Circulation, 2018, 138, .                  | 1.6  | 0         |
| 50 | The CSRP2BP histone acetyltransferase drives smooth muscle gene expression. Nucleic Acids Research, 2017, 45, 3046-3058.                                                | 14.5 | 13        |
| 51 | Effect of geraniol on rat cardiomyocytes and its potential use as a cardioprotective natural compound. Life Sciences, 2017, 172, 8-12.                                  | 4.3  | 21        |
| 52 | Bringing new dimensions to drug discovery screening: impact of cellular stimulation technologies.<br>Drug Discovery Today, 2017, 22, 1045-1055.                         | 6.4  | 16        |
| 53 | High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells. Science Translational Medicine, 2017, 9, .             | 12.4 | 297       |
| 54 | Id genes are essential for early heart formation. Genes and Development, 2017, 31, 1325-1338.                                                                           | 5.9  | 64        |

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | An Automated Platform for Assessment of Congenital and Drug-Induced Arrhythmia with hiPSC-Derived Cardiomyocytes. Frontiers in Physiology, 2017, 8, 766.                                                                  | 2.8  | 64        |
| 56 | The All-Chemical Approach. Circulation Research, 2016, 119, 505-507.                                                                                                                                                      | 4.5  | 1         |
| 57 | miR-322/-503 cluster is expressed in the earliest cardiac progenitor cells and drives cardiomyocyte specification. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9551-9556. | 7.1  | 66        |
| 58 | Metallic Nanoislands on Graphene as Highly Sensitive Transducers of Mechanical, Biological, and<br>Optical Signals. Nano Letters, 2016, 16, 1375-1380.                                                                    | 9.1  | 66        |
| 59 | High throughput physiological screening of iPSC-derived cardiomyocytes for drug development.<br>Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1717-1727.                                           | 4.1  | 99        |
| 60 | Notch-independent RBPJ controls angiogenesis in the adult heart. Nature Communications, 2016, 7, 12088.                                                                                                                   | 12.8 | 43        |
| 61 | Stereoselective synthesis of mexiletine and structural analogs with chiral tert-butanesulfinamide.<br>Tetrahedron Letters, 2015, 56, 4195-4199.                                                                           | 1.4  | 8         |
| 62 | Cholesterol-derived glucocorticoids control early fate specification in embryonic stem cells. Stem Cell Research, 2015, 15, 88-95.                                                                                        | 0.7  | 5         |
| 63 | Developmental origin of age-related coronary artery disease. Cardiovascular Research, 2015, 107, 287-294.                                                                                                                 | 3.8  | 20        |
| 64 | High Content Screening for Modulators of Cardiac Differentiation in Human Pluripotent Stem Cells.<br>Methods in Molecular Biology, 2015, 1263, 43-61.                                                                     | 0.9  | 6         |
| 65 | 1,5-Disubstituted benzimidazoles that direct cardiomyocyte differentiation from mouse embryonic stem cells. Bioorganic and Medicinal Chemistry, 2015, 23, 5282-5292.                                                      | 3.0  | 14        |
| 66 | Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature, 2015, 525, 479-485.                                                                                                                        | 27.8 | 402       |
| 67 | Cyclic stretch of embryonic cardiomyocytes increases proliferation, growth, and expression while repressing Tgf-β signaling. Journal of Molecular and Cellular Cardiology, 2015, 79, 133-144.                             | 1.9  | 56        |
| 68 | Retinoic Acid Activity in Undifferentiated Neural Progenitors Is Sufficient to Fulfill Its Role in Restricting Fgf8 Expression for Somitogenesis. PLoS ONE, 2015, 10, e0137894.                                           | 2.5  | 44        |
| 69 | Reprogramming the Cardiac Field. Circulation Research, 2014, 114, 409-411.                                                                                                                                                | 4.5  | 2         |
| 70 | Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature, 2014, 508, 531-535.                                                                                                                     | 27.8 | 377       |
| 71 | HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles. Genes and Development, 2014, 28, 841-857.                                | 5.9  | 132       |
| 72 | Technical Variations in Low-Input RNA-seq Methodologies. Scientific Reports, 2014, 4, 3678.                                                                                                                               | 3.3  | 75        |

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Coordinate Nodal and BMP inhibition directs Baf60c-dependent cardiomyocyte commitment. Genes and<br>Development, 2013, 27, 2332-2344.                                                                                              | 5.9  | 54        |
| 74 | Induced Pluripotent Stem Cells in Cardiovascular Drug Discovery. Circulation Research, 2013, 112, 534-548.                                                                                                                         | 4.5  | 99        |
| 75 | Developing microRNA screening as a functional genomics tool for disease research. Frontiers in Physiology, 2013, 4, 223.                                                                                                           | 2.8  | 16        |
| 76 | Jumonji and Cardiac Fate. Circulation Research, 2013, 113, 837-839.                                                                                                                                                                | 4.5  | 4         |
| 77 | Quantitative Transcriptomics using Designed Primer-based Amplification. Scientific Reports, 2013, 3, 1740.                                                                                                                         | 3.3  | 38        |
| 78 | Whole-genome microRNA screening identifies <i>let-7</i> and <i>mir-18</i> as regulators of germ layer formation during early embryogenesis. Genes and Development, 2012, 26, 2567-2579.                                            | 5.9  | 59        |
| 79 | Laser-Based Propagation of Human iPS and ES Cells Generates Reproducible Cultures with Enhanced<br>Differentiation Potential. Stem Cells International, 2012, 2012, 1-13.                                                          | 2.5  | 8         |
| 80 | Synthesis and SAR of <i>b</i> -Annulated 1,4-Dihydropyridines Define Cardiomyogenic Compounds as<br>Novel Inhibitors of TGFβ Signaling. Journal of Medicinal Chemistry, 2012, 55, 9946-9957.                                       | 6.4  | 62        |
| 81 | APJ acts as a dual receptor in cardiac hypertrophy. Nature, 2012, 488, 394-398.                                                                                                                                                    | 27.8 | 204       |
| 82 | BAF60 A, B, and Cs of muscle determination and renewal. Genes and Development, 2012, 26, 2673-2683.                                                                                                                                | 5.9  | 50        |
| 83 | A boost for heart regeneration. Nature, 2012, 492, 360-361.                                                                                                                                                                        | 27.8 | 13        |
| 84 | HNF4α Antagonists Discovered by a High-Throughput Screen for Modulators of the Human Insulin<br>Promoter. Chemistry and Biology, 2012, 19, 806-818.                                                                                | 6.0  | 67        |
| 85 | High throughput measurement of Ca2+ dynamics for drug risk assessment in human stem cell-derived cardiomyocytes by kinetic image cytometry. Journal of Pharmacological and Toxicological Methods, 2012, 66, 246-256.               | 0.7  | 92        |
| 86 | Small Molecule-Mediated TGF-Î <sup>2</sup> Type II Receptor Degradation Promotes Cardiomyogenesis in Embryonic<br>Stem Cells. Cell Stem Cell, 2012, 11, 242-252.                                                                   | 11.1 | 119       |
| 87 | Identification of a specific reprogramming-associated epigenetic signature in human induced<br>pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of<br>America, 2012, 109, 16196-16201. | 7.1  | 152       |
| 88 | Chemical Genetics of Cardiac Regeneration. , 2012, , 707-720.                                                                                                                                                                      |      | 0         |
| 89 | Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13016-13021.                | 7.1  | 199       |
| 90 | TGFβ-Dependent Epithelial-to-Mesenchymal Transition Is Required to Generate Cardiospheres from<br>Human Adult Heart Biopsies. Stem Cells and Development, 2012, 21, 3081-3090.                                                     | 2.1  | 34        |

| #   | Article                                                                                                                                                                                                               | lF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | A Nodal-to-TGFβ Cascade Exerts Biphasic Control Over Cardiopoiesis. Circulation Research, 2012, 111, 876-881.                                                                                                         | 4.5  | 24        |
| 92  | Wnt Inhibition Correlates with Human Embryonic Stem Cell Cardiomyogenesis: A Structure–Activity<br>Relationship Study Based on Inhibitors for the Wnt Response. Journal of Medicinal Chemistry, 2012, 55,<br>697-708. | 6.4  | 63        |
| 93  | Serumâ€Free Generation of Multipotent Mesoderm (Kdr + ) Progenitor Cells in Mouse Embryonic Stem<br>Cells for Functional Genomics Screening. Current Protocols in Stem Cell Biology, 2012, 23, Unit 1F.13.            | 3.0  | 5         |
| 94  | Fine-Tuning of Drp1/Fis1 Availability by AKAP121/Siah2 Regulates Mitochondrial Adaptation to Hypoxia.<br>Molecular Cell, 2011, 44, 532-544.                                                                           | 9.7  | 202       |
| 95  | What Your Heart Doth Know. Cell Stem Cell, 2011, 8, 124-126.                                                                                                                                                          | 11.1 | 2         |
| 96  | Cardiac muscle regeneration: lessons from development. Genes and Development, 2011, 25, 299-309.                                                                                                                      | 5.9  | 156       |
| 97  | Characterization of a novel angiogenic model based on stable, fluorescently labelled endothelial cell<br>lines amenable to scale-up for high content screening. Biology of the Cell, 2011, 103, 467-481.              | 2.0  | 15        |
| 98  | A Chemical Biology Approach to Myocardial Regeneration. Journal of Cardiovascular Translational<br>Research, 2011, 4, 340-350.                                                                                        | 2.4  | 27        |
| 99  | Small-Molecule Inhibitors of the Wnt Pathway Potently Promote Cardiomyocytes From Human<br>Embryonic Stem Cell–Derived Mesoderm. Circulation Research, 2011, 109, 360-364.                                            | 4.5  | 217       |
| 100 | Cardiac myocyte force development during differentiation and maturation. Annals of the New York<br>Academy of Sciences, 2010, 1188, 121-127.                                                                          | 3.8  | 94        |
| 101 | Cardiac Development in the Frog. , 2010, , 87-102.                                                                                                                                                                    |      | 2         |
| 102 | Non-Cardiomyocytes Influence the Electrophysiological Maturation of Human Embryonic Stem<br>Cell-Derived Cardiomyocytes During Differentiation. Stem Cells and Development, 2010, 19, 783-795.                        | 2.1  | 167       |
| 103 | Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation.<br>Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10514-10519.                | 7.1  | 222       |
| 104 | Hybrid Median Filter Background Estimator for Correcting Distortions in Microtiter Plate Data. Assay and Drug Development Technologies, 2010, 8, 238-250.                                                             | 1.2  | 8         |
| 105 | Phenothiazine Neuroleptics Signal to the Human Insulin Promoter as Revealed by a Novel<br>High-Throughput Screen. Journal of Biomolecular Screening, 2010, 15, 663-670.                                               | 2.6  | 30        |
| 106 | Lentiviral Vectors and Protocols for Creation of Stable hESC Lines for Fluorescent Tracking and Drug Resistance Selection of Cardiomyocytes. PLoS ONE, 2009, 4, e5046.                                                | 2.5  | 206       |
| 107 | Alternative Splicing in the Differentiation of Human Embryonic Stem Cells into Cardiac Precursors.<br>PLoS Computational Biology, 2009, 5, e1000553.                                                                  | 3.2  | 86        |
| 108 | Electrophysiological Challenges of Cell-Based Myocardial Repair. Circulation, 2009, 120, 2496-2508.                                                                                                                   | 1.6  | 98        |

| #   | Article                                                                                                                                                                             | IF          | CITATIONS    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|
| 109 | Deletion of Shp2 Tyrosine Phosphatase in Muscle Leads to Dilated Cardiomyopathy, Insulin Resistance,<br>and Premature Death. Molecular and Cellular Biology, 2009, 29, 378-388.     | 2.3         | 62           |
| 110 | Natural and Synthetic Regulators of Embryonic Stem Cell Cardiogenesis. Pediatric Cardiology, 2009, 30, 635-642.                                                                     | 1.3         | 55           |
| 111 | A novel activity of the Dickkopf-1 amino terminal domain promotes axial and heart development independently of canonical Wnt inhibition. Developmental Biology, 2008, 324, 131-138. | 2.0         | 25           |
| 112 | Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. Journal of Cell<br>Biology, 2008, 183, 129-141.                                                     | 5.2         | 164          |
| 113 | A Comparative Analysis of Standard Microtiter Plate Reading Versus Imaging in Cellular Assays. Assay<br>and Drug Development Technologies, 2008, 6, 557-567.                        | 1.2         | 18           |
| 114 | Contrasting Expression of Keratins in Mouse and Human Embryonic Stem Cells. PLoS ONE, 2008, 3, e3451.                                                                               | 2.5         | 22           |
| 115 | Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. Journal of Experimental Medicine, 2008, 205, i24-i24.                                               | 8.5         | 0            |
| 116 | Signaling Pathways in Embryonic Heart Induction. Advances in Developmental Biology (Amsterdam,) Tj ETQq0 (                                                                          | ) 0 rgBT /O | verlock 10 T |
| 117 | Multiple functions of Cerberus cooperate to induce heart downstream of Nodal. Developmental<br>Biology, 2007, 303, 57-65.                                                           | 2.0         | 52           |
| 118 | Cardiac Development of Human Embryonic Stem Cells. , 2007, , 227-237.                                                                                                               |             | 0            |
| 119 | Chemical probes of neural stem cell self-renewal. Nature Chemical Biology, 2007, 3, 246-247.                                                                                        | 8.0         | 2            |
| 120 | Highâ€īhroughput Screening for Modulators of Stem Cell Differentiation. Methods in Enzymology,<br>2006, 414, 300-316.                                                               | 1.0         | 28           |
| 121 | Beta-cell differentiation from nonendocrine epithelial cells of the adult human pancreas. Nature<br>Medicine, 2006, 12, 310-316.                                                    | 30.7        | 207          |
| 122 | Embryonic Heart Induction. Annals of the New York Academy of Sciences, 2006, 1080, 85-96.                                                                                           | 3.8         | 31           |
| 123 | Developmental patterning of the cardiac atrioventricular canal by Notch and Hairy-related transcription factors. Development (Cambridge), 2006, 133, 4381-4390.                     | 2.5         | 147          |
| 124 | Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex. Genes and Development, 2005, 19, 387-396.                                                   | 5.9         | 192          |
| 125 | Zebrafish narrowminded disrupts the transcription factor prdm1 and is required for neural crest and sensory neuron specification. Developmental Biology, 2005, 278, 347-357.        | 2.0         | 102          |
| 126 | No Pancreatic Endocrine Stem Cells?. New England Journal of Medicine, 2004, 351, 1024-1026.                                                                                         | 27.0        | 10           |

| #   | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Heart Induction: Embryology to Cardiomyocyte Regeneration. Trends in Cardiovascular Medicine, 2004, 14, 121-125.                                                                                                          | 4.9  | 69        |
| 128 | Isoxazolyl-Serine-Based Agonists of Peroxisome Proliferator-Activated Receptor:Â Design, Synthesis,<br>and Effects on Cardiomyocyte Differentiation. Journal of the American Chemical Society, 2004, 126,<br>16714-16715. | 13.7 | 37        |
| 129 | Dlx proteins position the neural plate border and determine adjacent cell fates. Development<br>(Cambridge), 2003, 130, 331-342.                                                                                          | 2.5  | 106       |
| 130 | Left-right asymmetry: Nodal points. Journal of Cell Science, 2003, 116, 3251-3257.                                                                                                                                        | 2.0  | 48        |
| 131 | Asymmetries in H+/K+-ATPase and Cell Membrane Potentials Comprise a Very Early Step in Left-Right<br>Patterning. Cell, 2002, 111, 77-89.                                                                                  | 28.9 | 366       |
| 132 | REST mRNA expression in normal and regenerating avian auditory epithelium. Hearing Research, 2002, 172, 62-72.                                                                                                            | 2.0  | 10        |
| 133 | Isolation and characterization ofXenopus Hey-1: A downstream mediator of Notch signaling.<br>Developmental Dynamics, 2002, 225, 554-560.                                                                                  | 1.8  | 15        |
| 134 | Left-Right Asymmetry Determination in Vertebrates. Annual Review of Cell and Developmental Biology, 2001, 17, 779-805.                                                                                                    | 9.4  | 192       |
| 135 | TGF-Â Superfamily Signaling and Left-Right Asymmetry. Science Signaling, 2001, 2001, re1-re1.                                                                                                                             | 3.6  | 43        |
| 136 | Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes and Development, 2001, 15, 304-315.                                                                                                                       | 5.9  | 456       |
| 137 | Expression of connexin 30 inXenopus embryos and its involvement in hatching gland function.<br>Developmental Dynamics, 2000, 219, 96-101.                                                                                 | 1.8  | 23        |
| 138 | Subdivision of the Cardiac Nkx2.5 Expression Domain into Myogenic and Nonmyogenic Compartments.<br>Developmental Biology, 2000, 218, 326-340.                                                                             | 2.0  | 64        |
| 139 | Notch Regulates Cell Fate in the Developing Pronephros. Developmental Biology, 2000, 227, 567-580.                                                                                                                        | 2.0  | 90        |
| 140 | Spatially distinct head and heart inducers within the Xenopus organizer region. Current Biology, 1999, 9, 800-809.                                                                                                        | 3.9  | 112       |
| 141 | Cerberus regulates left–right asymmetry of the embryonic head and heart. Current Biology, 1999, 9,<br>931-938.                                                                                                            | 3.9  | 125       |
| 142 | Embryological basis for cardiac left–right asymmetry. Seminars in Cell and Developmental Biology,<br>1999, 10, 109-116.                                                                                                   | 5.0  | 18        |
| 143 | Small-molecule control of insulin and PDGF receptor signaling and the role of membrane attachment.<br>Current Biology, 1998, 8, 11-18.                                                                                    | 3.9  | 41        |
| 144 | Evolutionary conservation of mechanisms upstream of asymmetricNodal expression: Reconciling chick andXenopus. , 1998, 23, 185-193.                                                                                        |      | 27        |

| #   | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Gap Junctions Are Involved in the Early Generation of Left–Right Asymmetry. Developmental Biology,<br>1998, 203, 90-105.                                                                                                                    | 2.0 | 195       |
| 146 | PDGF mediates cardiac microvascular communication Journal of Clinical Investigation, 1998, 102, 837-843.                                                                                                                                    | 8.2 | 111       |
| 147 | Distribution and Functions of Platelet-Derived Growth Factors and Their Receptors during Embryogenesis. International Review of Cytology, 1997, 172, 95-127.                                                                                | 6.2 | 65        |
| 148 | Organizer Induction Determines Left–Right Asymmetry inXenopus. Developmental Biology, 1997, 189,<br>68-78.                                                                                                                                  | 2.0 | 63        |
| 149 | Spina bifida occulta in homozygousPatch mouse embryos. , 1997, 209, 105-116.                                                                                                                                                                |     | 40        |
| 150 | Embryonic mesoderm cells spread in response to platelet-derived growth factor and signaling by<br>phosphatidylinositol 3-kinase Proceedings of the National Academy of Sciences of the United States<br>of America, 1996, 93, 9641-9644.    | 7.1 | 54        |
| 151 | Endoderm and Cardiogenesis. Trends in Cardiovascular Medicine, 1996, 6, 211-216.                                                                                                                                                            | 4.9 | 31        |
| 152 | Cloning and expression ofXenopus CCTγ, a chaperonin subunit developmentally regulated in neural-derived and myogenic lineages. Developmental Dynamics, 1996, 205, 387-394.                                                                  | 1.8 | 10        |
| 153 | Cyclopamine, a steroidal alkaloid, disrupts development of cranial neural crest cells in Xenopus.<br>Developmental Dynamics, 1995, 202, 255-270.                                                                                            | 1.8 | 27        |
| 154 | Xenopus laevis cellular retinoic acid-binding protein: temporal and spatial expression pattern during early embryogenesis. Mechanisms of Development, 1994, 47, 53-64.                                                                      | 1.7 | 15        |
| 155 | Localization of PDGF A and PDGFRα mRNA in Xenopus embryos suggests signalling from neural ectoderm and pharyngeal endoderm to neural crest cells. Mechanisms of Development, 1994, 48, 165-174.                                             | 1.7 | 46        |
| 156 | TheXenopus platelet-derived growth factor α receptor: cDNA Cloning and demonstration that<br>mesoderm induction establishes the lineage-specific pattern of ligand and receptor gene expression.<br>Genesis, 1993, 14, 185-193.             | 2.1 | 27        |
| 157 | Expression of mouse PDGF-A and PDGF α-receptor genes during pre- and post-implantation development:<br>Evidence for a developmental shift from an autocrine to a paracrine mode of action. Mechanisms of<br>Development, 1992, 39, 181-191. | 1.7 | 65        |
| 158 | Selective expression of PDGF A and its receptor during early mouse embryogenesis. Developmental Biology, 1990, 138, 114-122.                                                                                                                | 2.0 | 203       |