Scott R Burrows

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/3079927/publications.pdf
Version: 2024-02-01

Estimating the global burden of Epsteinâ€"Barr virus-related cancers. Journal of Cancer Research and
Clinical Oncology, 2022, 148, 31-46.

Sufficiency for inducible Caspase-9 safety switch in human pluripotent stem cells and disease cells. Gene Therapy, 2020, 27, 525-534.

The early proximal $\hat{\imath} \pm \hat{\imath}^{2}$ TCR signalosome specifies thymic selection outcome through a quantitative protein interaction network. Science Immunology, 2019, 4, .

Peptide mimic for influenza vaccination using nonnatural combinatorial chemistry. Journal of Clinical Investigation, 2018, 128, 1569-1580.
$5 \quad$ Epstein-Barr virusâ $\mathrm{E}^{\prime \prime}$ specific T cell therapy for progressive multiple sclerosis. JCI Insight, 2018, 3, .
5.0

105
3.8

Translational Immunology, 2017, 6, e126.

CD8 + Tâ€cell specificity is compromised at a defined MHCI/CD8 affinity threshold. Immunology and Cell
Biology, 2017, 95, 68-76.

Targeted suppression of autoreactive CD8+ T-cell activation using blocking anti-CD8 antibodies.
Scientific Reports, 2016, 6, 35332.

Coinfection with Human Cytomegalovirus Genetic Variants in Transplant Recipients and Its Impact on
9 Antiviral T Cell Immune Reconstitution. Journal of Virology, 2016, 90, 7497-7507.
Engineering of Isogenic Cells Deficient for MR1 with a CRISPR/Cas9 Lentiviral System: Tools To Study
10 Microbial Antigen Processing and Presentation to Human MR1-Restricted T Cells. Journal of
Immunology, 2016, 197, 971-982.
11 The impact of HLA class I and EBV latency-II antigen-specific CD8+ T cells on the pathogenesis of EBV+
Hodgkin lymphoma. Clinical and Experimental Immunology, 2016, 183, 206-220.

Identification of human viral proteinâ€derived ligands recognized by individual MHClâ€restricted Tâ€eell
12 receptors. Immunology and Cell Biology, 2016, 94, 573-582.
2.3

25

T Cell Epitope Clustering in the Highly Immunogenic BZLF1 Antigen of Epstein-Barr Virus. Journal of
Virology, 2015, 89, 703-712.

Naive CD8⁺ Tâ€eell precursors display structured TCR repertoires and composite antigenâ€driven selection dynamics. Immunology and Cell Biology, 2015, 93, 625-633.

T Cell Cross-Reactivity between a Highly Immunogenic EBV Epitope and a Self-Peptide Naturally
Presented by HLA-B*18:01+ Cells. Journal of Immunology, 2015, 194, 4668-4675.
0.8

A Safeguard System for Induced Pluripotent Stem Cell-Derived Rejuvenated T Cell Therapy. Stem Cell
Reports, 2015, 5, 597-608.

CD8+ T Cells from a Novel T Cell Receptor Transgenic Mouse Induce Liver-Stage Immunity That Can Be
Boosted by Blood-Stage Infection in Rodent Malaria. PLoS Pathogens, 2014, 10, e1004135.
4.7

68

19 Epsteinấ "Barr virus-specific adoptive immunotherapy for progressive multiple sclerosis. Multiple

Missense single nucleotide polymorphisms in the human T cell receptor loci control variable gene usage in the T cell repertoire. British Journal of Haematology, 2014, 166, 148-152.

Deficiency of CD8⁺ effector memory T cells is an early and persistent feature of multiple sclerosis. Multiple Sclerosis Journal, 2014, 20, 1825-1832.

A Molecular Basis for the Interplay between T Cells, Viral Mutants, and Human Leukocyte Antigen Micropolymorphism. Journal of Biological Chemistry, 2014, 289, 16688-16698.

Epsteinâ€"Barr virus and multiple sclerosis: potential opportunities for immunotherapy. Clinical and Translational Immunology, 2014, 3, e27.

Molecular Imprint of Exposure to Naturally Occurring Genetic Variants of Human Cytomegalovirus on the T cell Repertoire. Scientific Reports, 2014, 4, 3993.
3.3

19

IMGT/HighV QUEST paradigm for T cell receptor IMGT clonotype diversity and next generation repertoire immunoprofiling. Nature Communications, 2013, 4, 2333.

Peptide length determines the outcome of TCR/peptide-MHCI engagement. Blood, 2013, 121, 1112-1123.
1.4

89
27 Immune Parameters to Consider When Choosing T-Cell Receptors for Therapy. Frontiers in
27 Immunology, 2013, 4, 229.High Frequency of Herpesvirus-Specific Clonotypes in the Human T Cell Repertoire Can Remain Stableover Decades with Minimal Turnover. Journal of Virology, 2013, 87, 697-700.
3.4

CD8+ T cells far predominate over CD4+ T cells in healthy immune response to Epstein-Barr virus
infected lymphoblastoid cell lines. Blood, 2012, 120, 5085-5087.

Tracking the repertoire of human adult and neonatal <scp>T</scp> cells during <i>ex vivo</i> amplification. British Journal of Haematology, 2012, 159, 370-373.

The Energetic Basis Underpinning T-cell Receptor Recognition of a Super-bulged Peptide Bound to a
39 Major Histocompatibility Complex Class I Molecule. Journal of Biological Chemistry, 2012, 287,
$3.4 \quad 28$
12267-12276.
40 A structural voyage toward an understanding of the <scp>MHC</scp>â€lâ€restricted immune response:
lessons learned and much to be learned. Immunological Reviews, 2012, 250, 61-81.
$6.0 \quad 81$

41	Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature, 2012, 486, 554-558.	27.8	612
42	Understanding human Tâ€cellâ€mediated immunoregulation through herpesviruses. Immunology and Cell Biology, 2011, 89, 352-358.	2.3	18
43	Human immunology: a case for the ascent of nonâ€furry immunology. Immunology and Cell Biology, 2011, 89, 330-331.	2.3	25
44	Decreased CD8+T cell response to Epstein-Barr virus infected B cells in multiple sclerosis is not due to decreased HLA class I expression on B cells or monocytes. BMC Neurology, 2011, 11, 95.	1.8	14
45	Anti-CD8 Antibodies Can Trigger CD8+ T Cell Effector Function in the Absence of TCR Engagement and Improve Peptideấ '"MHCl Tetramer Staining. Journal of Immunology, 2011, 187, 654-663. $_{\text {I }}$	0.8	34
46	Antigen-Driven Patterns of TCR Bias Are Shared across Diverse Outcomes of Human Hepatitis C Virus Infection. Journal of Immunology, 2011, 186, 901-912.	0.8	26
47	Expansion of EBNA1-specific effector T cells in posttransplantation lymphoproliferative disorders. Blood, 2010, 116, 2245-2252.	1.4	65
48	Hard wiring of T cell receptor specificity for the major histocompatibility complex is underpinned by TCR adaptability. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10608-10613.	7.1	101
49	MHC Class I Molecules with Superenhanced CD8 Binding Properties Bypass the Requirement for Cognate TCR Recognition and Nonspecifically Activate CTLs. Journal of Immunology, 2010, 184, 3357-3366.	0.8	26

$50 \quad$ Genetic and Structural Basis for Selection of a Ubiquitous T Cell Receptor Deployed in Epstein-Barr

4.7

110

Virus Infection. PLoS Pathogens, 2010, 6, el001198.

Allelic polymorphism in the T cell receptor and its impact on immune responses. Journal of
Experimental Medicine, 2010, 207, 1555-1567.
8.5

Strains of Epstein-Barr virus infecting multiple sclerosis patients. Multiple Sclerosis Journal, 2010, 16,
643-651.
$57 \quad$ T Cell Allorecognition via Molecular Mimicry. Immunity, 2009, 31, 897-908.
The peptide length specificity of some HLA class I alleles is very broad and includes peptides of up to 25
amino acids in length. Molecular Immunology, 2009, 46, 1911-1917.
61 Cross-recognition of HLA DR4 alloantigen by virus-specific CD8+ T cells: a new paradigm for self-/nonself-recognition. Blood, 2009, 114, 2244-2253.
63 T-cells behaving badly: structural insights into alloreactivity and autoimmunity. Current Opinion inImmunology, 2008, 20, 575-580.5.533
T cell allorecognition and MHC restrictionâ€"A case of Jekyll and Hyde?. Molecular Immunology, 2008,2.236
45, 583-598.
Preferential binding of unusually long peptides to MHC class I and its influence on the selection of65 target peptides for T cell recognition. Molecular Immunology, 2008, 45, 1818-1824.
66 T-cell allorecognition: a case of mistaken identity or dÃ@jÃ vu?. Trends in Immunology, 2008, 29, 220-226.6.844Phase I Trial of a CD8⁺ T-Cell Peptide Epitope-Based Vaccine for Infectious Mononucleosis.3.4133Journal of Virology, 2008, 82, 1448-1457.Widespread Sequence Variation in Epsteinâ€Barr Virus Nuclear Antigen 1 Influences the Antiviral T Cell4.029Response. Journal of Infectious Diseases, 2008, 197, 1594-1597.Impact of clonal competition for peptide-MHC complexes on the CD8+ T-cell repertoire selection in a1.454persistent viral infection. Blood, 2008, 111, 4283-4292.

A mechanism for the HLA-A*01â€"associated risk for EBV+ Hodgkin lymphoma and infectious mononucleosis. Blood, 2008, 112, 2589-2590.
73 A T cell receptor flattens a bulged antigenic peptide presented by a major histocompatibility complex
class I molecule. Nature Immunology, 2007, 8, 268-276.

79	T-cell grit: large clonal expansions of virus-specific CD8+ T cells can dominate in the peripheral circulation for at least 18 years. Blood, 2005, 106, 4412-4413.	1.4	28
80	The CDR3 regions of an immunodominant T cell receptor dictate the 'energetic landscape' of peptide-MHC recognition. Nature Immunology, 2005, 6, 171-180.	14.5	187
81	T cell receptor recognition of a 'super-bulged' major histocompatibility complex class lâ€"bound peptide. Nature Immunology, 2005, 6, 1114-1122.	14.5	280

83	High Resolution Structures of Highly Bulged Viral Epitopes Bound to Major Histocompatibility Complex Class I. Journal of Biological Chemistry, 2005, 280, 23900-23909.	3.4	162
84	CTL Recognition of a Bulged Viral Peptide Involves Biased TCR Selection. Journal of Immunology, 2005, 175, 3826-3834.	0.8	93
85	The immunogenicity of a viral cytotoxic T cell epitope is controlled by its MHC-bound conformation. Journal of Experimental Medicine, 2005, 202, 1249-1260.	8.5	82
86	Endogenous Presentation of CD8+ T Cell Epitopes from Epstein-Barr Virusâ€"encoded Nuclear Antigen 1. Journal of Experimental Medicine, 2004, 199, 1421-1431.	8.5	148
87	Selection Pressure-Driven Evolution of the Epstein-Barr Virus-Encoded Oncogene LMP1 in Virus Isolates from Southeast Asia. Journal of Virology, 2004, 78, 7131-7137.	3.4	36
88	Potent Tâ€,,cell response to a class I-binding 13-mer viral epitope and the influence of HLA micropolymorphism in controlling epitope length. European Journal of Immunology, 2004, 34, 2510-2519.	2.9	48
89	Cross-reactive recognition of viral and self-peptides by a â€œpublicâ€•T cell receptor expressed by cytotoxic T lymphocytes expanded in multiple unrelated individuals. Immunology Letters, 2004, 93, 7-9.	2.5	3
90	A Structural Basis for the Selection of Dominant $\hat{l} \pm \hat{\imath^{2}}$ T Cell Receptors in Antiviral Immunity. Immunity, 2003, 18, 53-64.	14.3	321

91
92 A Naturally Selected Dimorphism within the HLA-B44 Supertype Alters Class I Structure, Peptide
Repertoire, and T Cell Recognition. Journal of Experimental Medicine, 2003, 198, 679-691.
8.5

192

Ex Vivo Analysis of T-Cell Responses to Epstein-Barr Virus-Encoded Oncogene Latent Membrane Protein
921 Reveals Highly Conserved Epitope Sequences in Virus Isolates from Diverse Geographic Regions.
3.4

Journal of Virology, 2003, 77, 7401-7410.
93 Promiscuous CTL Recognition of Viral Epitopes on Multiple Human Leukocyte Antigens: Biological
0.8

Validation of the Proposed HLA A24 Supertype. Journal of Immunology, 2003, 171, 1407-1412.
43

A Novel Approach to Antigen-Specific Deletion of CTL with Minimal Cellular Activation Using î ± 3 Domain
101 Differential Splicing of Antigen-Encoding RNA Reduces Endogenous Epitope Presentation That101 Regulates the Expansion and Cytotoxicity of T Cells. Journal of Immunology, 2000, 165, 1840-1846.0.84
102 Role of Cytotoxic T Lymphocytes in Epstein-Barr Virus-Associated Diseases. Annual Review of7.3
$1.4 \quad 16$
103 Direct Alloreactivity by Human Cytotoxic T Lymphocytes Can Be Inhibited by Altered Peptide
Antagonism. Blood, 1999, 93, 1020-1024.
Activation and adoptive transfer of Epstein-Barr virus-specific cytotoxic T cells in solid organ7.1307Academy of Sciences of the United States of America, 1999, 96, 10391-10396.
The influence of antiviral T-cell responses on the alloreactive repertoire. Trends in Immunology, 1999,
105 20, 203-207.7.557Vaccine strategies against Epstein-Barr virus-associated diseases: lessons from studies on cytotoxicT-cell-mediated immune regulation. Immunological Reviews, 1999, 170, 49-64.

Targeting Epstein-Barr virus nuclear antigen 1 (EBNA1) through the class II pathway restores immune
114 recognition by EBNA1-specific cytotoxic T lymphocytes: evidence for HLA-DM-independent processing
A case report: Immune responses and clinical course of the first human use of
117 granulocyte/macrophage-colony-stimulating-factor-transduced autologous melanoma cells for 4.2 101 immunotherapy. Cancer Immunology, Immunotherapy, 1997, 44, 10-20.cells and its role in alloreactivity. European Journal of Immunology, 1997, 27, 1726-1736.
120 Strategies Involved in Developing an Effective Vaccine for EBV-Associated Diseases. Advances in Cancer 5.0 52
Research, 1996, 69, 213-245.121 Development of Epstein-Barr virus-specific memory T cell receptor clonotypes in acute infectious
$8.5 \quad 82$mononucleosis.. Journal of Experimental Medicine, 1996, 184, 1815-1824.
Interleukin-1 beta-converting enzyme-like protease cleaves DNA-dependent protein kinase in cytotoxic T
Restoration of endogenous antigen processing in Burkitt's lymphoma cells by Epstein-Barr virus

Endoplasmic reticulum signal sequence facilitated transport of peptide epitopes restores
128 immunogenicity of an antigen processing defective tumour cell line. International Immunology, 1994,
133 Localization of Epstein-Barr virus cytotoxic T cell epitopes using recombinant vaccinia: implications $\quad 8.5$
134 Sequence variation of cytotoxic T cell epitopes in different isolates of Epstein-Barr virus. European

Journal of Immunology, 1992, 22, 183-189.

```135 The specificity of recognition of a cytotoxic T lymphocyte epitope. European Journal of Immunology,
137 T cell-T cell killing is induced by specific epitopes: evidence for an apoptotic mechanism.. Journal of
Experimental Medicine, 1991, 173, 681-686.
8.5 ..... 51
Inhibition of HLA B8-restricted recognition by unrelated peptides: evidence for allosteric inhibition.
\(2.5 \quad 2\)
Immunology Letters, 1991, 30, 339-344. 138
Oligopeptide Induction of a Secondary Cytotoxic T-cell Response to Epstein-Barr Virus In Vitro.2.7

149 Cytotoxic T-cell clones discriminate between A- and B-type Epstein-Barr virus transformants. Nature,

150 Calcium concentration defines two stages in transformation of lymphocytes by epstein-barr virus.
A comparison of epstein-barr virus-specific T-cell immunity in malaria-endemic and -nonendemic
regions of Papua New Guinea. International Journal of Cancer, 1983, 31, 727-732.

152 Epstein-Barr virus specific T-cell response in nasopharyngeal carcinoma patients. International Journal of Cancer, 1983, 32, 301-305.```

