Scott R Burrows

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3079927/publications.pdf

Version: 2024-02-01

153 papers 11,258 citations

59 h-index 101 g-index

155 all docs

155
docs citations

155 times ranked 8547 citing authors

#	Article	IF	Citations
1	Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature, 2012, 486, 554-558.	27.8	612
2	Localization of Epstein-Barr virus cytotoxic T cell epitopes using recombinant vaccinia: implications for vaccine development Journal of Experimental Medicine, 1992, 176, 169-176.	8.5	406
3	A Structural Basis for the Selection of Dominant $\hat{l}\pm\hat{l}^2$ T Cell Receptors in Antiviral Immunity. Immunity, 2003, 18, 53-64.	14.3	321
4	Activation and adoptive transfer of Epstein-Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 10391-10396.	7.1	307
5	Dominant selection of an invariant T cell antigen receptor in response to persistent infection by Epstein-Barr virus Journal of Experimental Medicine, 1994, 180, 2335-2340.	8.5	290
6	T cell receptor recognition of a 'super-bulged' major histocompatibility complex class l–bound peptide. Nature Immunology, 2005, 6, 1114-1122.	14.5	280
7	An alloresponse in humans is dominated by cytotoxic T lymphocytes (CTL) cross-reactive with a single Epstein-Barr virus CTL epitope: implications for graft-versus-host disease Journal of Experimental Medicine, 1994, 179, 1155-1161.	8.5	273
8	HLA-B27–Restricted Antigen Presentation in the Absence of Tapasin Reveals Polymorphism in Mechanisms of HLA Class I Peptide Loading. Immunity, 1998, 8, 531-542.	14.3	245
9	T Cell Allorecognition via Molecular Mimicry. Immunity, 2009, 31, 897-908.	14.3	232
10	A T cell receptor flattens a bulged antigenic peptide presented by a major histocompatibility complex class I molecule. Nature Immunology, 2007, 8, 268-276.	14.5	206
11	Cytotoxic T-cell clones discriminate between A- and B-type Epstein-Barr virus transformants. Nature, 1988, 331, 719-721.	27.8	204
12	Restoration of endogenous antigen processing in Burkitt's lymphoma cells by Epstein-Barr virus latent membrane protein-1: coordinate up-regulation of peptide transporters and HLA-class I antigen expression. European Journal of Immunology, 1995, 25, 1374-1384.	2.9	195
13	IMGT/HighV QUEST paradigm for T cell receptor IMGT clonotype diversity and next generation repertoire immunoprofiling. Nature Communications, 2013, 4, 2333.	12.8	193
14	A Naturally Selected Dimorphism within the HLA-B44 Supertype Alters Class I Structure, Peptide Repertoire, and T Cell Recognition. Journal of Experimental Medicine, 2003, 198, 679-691.	8.5	192
15	The CDR3 regions of an immunodominant T cell receptor dictate the 'energetic landscape' of peptide-MHC recognition. Nature Immunology, 2005, 6, 171-180.	14.5	187
16	Role of Cytotoxic T Lymphocytes in Epstein-Barr Virus-Associated Diseases. Annual Review of Microbiology, 2000, 54, 19-48.	7.3	182
17	T cell receptor repertoire for a viral epitope in humans is diversified by tolerance to a background major histocompatibility complex antigen Journal of Experimental Medicine, 1995, 182, 1703-1715.	8.5	179
18	An Epstein-Barr virus-specific cytotoxic T cell epitope in EBV nuclear antigen 3 (EBNA 3) Journal of Experimental Medicine, 1990, 171, 345-349.	8.5	175

#	Article	IF	CITATIONS
19	Identification of cytotoxic T cell epitopes within Epstein-Barr virus (EBV) oncogene latent membrane protein 1 (LMP1): evidence for HLA A2 supertype-restricted immune recognition of EBV-infected cells by LMP1-specific cytotoxic T lymphocytes. European Journal of Immunology, 1998, 28, 451-458.	2.9	168
20	High Resolution Structures of Highly Bulged Viral Epitopes Bound to Major Histocompatibility Complex Class I. Journal of Biological Chemistry, 2005, 280, 23900-23909.	3.4	162
21	Cross-reactive memory T cells for Epstein-Barr virus augment the alloresponse to common human leukocyte antigens: degenerate recognition of major histocompatibility complex-bound peptide by T cells and its role in alloreactivity. European Journal of Immunology, 1997, 27, 1726-1736.	2.9	161
22	Quantitative and Qualitative Influences of Tapasin on the Class I Peptide Repertoire. Journal of Immunology, 2001, 166, 1016-1027.	0.8	154
23	Endogenous Presentation of CD8+ T Cell Epitopes from Epstein-Barr Virus–encoded Nuclear Antigen 1. Journal of Experimental Medicine, 2004, 199, 1421-1431.	8.5	148
24	Minimal epitopes expressed in a recombinant polyepitope protein are processed and presented to CD8+ cytotoxic T cells: implications for vaccine design Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 5845-5849.	7.1	138
25	Phase I Trial of a CD8 ⁺ T-Cell Peptide Epitope-Based Vaccine for Infectious Mononucleosis. Journal of Virology, 2008, 82, 1448-1457.	3.4	133
26	Have we cut ourselves too short in mapping CTL epitopes?. Trends in Immunology, 2006, 27, 11-16.	6.8	124
27	Epstein–Barr virus and multiple sclerosis: potential opportunities for immunotherapy. Clinical and Translational Immunology, 2014, 3, e27.	3.8	120
28	Human cytotoxic T-cell responses against Epstein-Barr virus nuclear antigens demonstrated by using recombinant vaccinia viruses Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 2906-2910.	7.1	114
29	Antigen Ligation Triggers a Conformational Change within the Constant Domain of the $\hat{l}\pm\hat{l}^2$ T Cell Receptor. Immunity, 2009, 30, 777-788.	14.3	111
30	Genetic and Structural Basis for Selection of a Ubiquitous T Cell Receptor Deployed in Epstein-Barr Virus Infection. PLoS Pathogens, 2010, 6, e1001198.	4.7	110
31	A comparison of epstein-barr virus-specific T-cell immunity in malaria-endemic and -nonendemic regions of Papua New Guinea. International Journal of Cancer, 1983, 31, 727-732.	5.1	106
32	X-Linked Agammaglobulinemia Patients Are Not Infected with Epstein-Barr Virus: Implications for the Biology of the Virus. Journal of Virology, 1999, 73, 1555-1564.	3.4	105
33	Epstein-Barr virus–specific T cell therapy for progressive multiple sclerosis. JCI Insight, 2018, 3, .	5.0	105
34	A case report: Immune responses and clinical course of the first human use of granulocyte/macrophage-colony-stimulating-factor-transduced autologous melanoma cells for immunotherapy. Cancer Immunology, Immunotherapy, 1997, 44, 10-20.	4.2	101
35	Hard wiring of T cell receptor specificity for the major histocompatibility complex is underpinned by TCR adaptability. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10608-10613.	7.1	101
36	Five new cytotoxic T cell epitopes identified within Epstein-Barr virus nuclear antigen 3. Journal of General Virology, 1994, 75, 2489-2493.	2.9	98

#	Article	IF	CITATIONS
37	Vaccine strategies against Epstein-Barr virus-associated diseases: lessons from studies on cytotoxic T-cell-mediated immune regulation. Immunological Reviews, 1999, 170, 49-64.	6.0	96
38	The Shaping of T Cell Receptor Recognition by Self-Tolerance. Immunity, 2009, 30, 193-203.	14.3	94
39	CTL Recognition of a Bulged Viral Peptide Involves Biased TCR Selection. Journal of Immunology, 2005, 175, 3826-3834.	0.8	93
40	Natural micropolymorphism in human leukocyte antigens provides a basis for genetic control of antigen recognition. Journal of Experimental Medicine, 2009, 206, 209-219.	8.5	93
41	The specificity of recognition of a cytotoxic T lymphocyte epitope. European Journal of Immunology, 1992, 22, 191-195.	2.9	91
42	Endoplasmic reticulum signal sequence facilitated transport of peptide epitopes restores immunogenicity of an antigen processing defective tumour cell line. International Immunology, 1994, 6, 639-645.	4.0	91
43	Defective Tâ€cell control of Epstein–Barr virus infection in multiple sclerosis. Clinical and Translational Immunology, 2017, 6, e126.	3.8	90
44	Peptide length determines the outcome of TCR/peptide-MHCI engagement. Blood, 2013, 121, 1112-1123.	1.4	89
45	Estimating the global burden of Epstein–Barr virus-related cancers. Journal of Cancer Research and Clinical Oncology, 2022, 148, 31-46.	2.5	84
46	Development of Epstein-Barr virus-specific memory T cell receptor clonotypes in acute infectious mononucleosis Journal of Experimental Medicine, 1996, 184, 1815-1824.	8.5	82
47	The immunogenicity of a viral cytotoxic T cell epitope is controlled by its MHC-bound conformation. Journal of Experimental Medicine, 2005, 202, 1249-1260.	8.5	82
48	Allelic polymorphism in the T cell receptor and its impact on immune responses. Journal of Experimental Medicine, 2010, 207, 1555-1567.	8.5	81
49	A structural voyage toward an understanding of the <scp>MHC</scp> â€lâ€restricted immune response: lessons learned and much to be learned. Immunological Reviews, 2012, 250, 61-81.	6.0	81
50	Peptide-MHC Class I Tetrameric Complexes Display Exquisite Ligand Specificity. Journal of Immunology, 2000, 165, 6229-6234.	0.8	80
51	Isolation of Cytotoxic T Lymphocytes from Healthy Seropositive Individuals Specific for Peptide Epitopes from Epstein–Barr Virus Nuclear Antigen 1: Implications for Viral Persistence and Tumor Surveillance1. Virology, 1995, 214, 633-637.	2.4	78
52	Decreased T cell reactivity to Epstein-Barr virus infected lymphoblastoid cell lines in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2009, 80, 498-505.	1.9	76
53	A Novel Approach to Antigen-Specific Deletion of CTL with Minimal Cellular Activation Using $\hat{l}\pm 3$ Domain Mutants of MHC Class I/Peptide Complex. Immunity, 2001, 14, 591-602.	14.3	70
54	T-cell receptor bias and immunity. Current Opinion in Immunology, 2008, 20, 119-125.	5.5	68

#	Article	IF	Citations
55	CD8+ T Cells from a Novel T Cell Receptor Transgenic Mouse Induce Liver-Stage Immunity That Can Be Boosted by Blood-Stage Infection in Rodent Malaria. PLoS Pathogens, 2014, 10, e1004135.	4.7	68
56	Epstein–Barr virus-specific adoptive immunotherapy for progressive multiple sclerosis. Multiple Sclerosis Journal, 2014, 20, 1541-1544.	3.0	67
57	Expansion of EBNA1-specific effector T cells in posttransplantation lymphoproliferative disorders. Blood, 2010, 116, 2245-2252.	1.4	65
58	TCRα Genes Direct MHC Restriction in the Potent Human T Cell Response to a Class I-Bound Viral Epitope. Journal of Immunology, 2006, 177, 6804-6814.	0.8	63
59	Targeting a Polyepitope Protein Incorporating Multiple Class II-Restricted Viral Epitopes to the Secretory/Endocytic Pathway Facilitates Immune Recognition by CD4 ⁺ Cytotoxic T Lymphocytes: a Novel Approach to Vaccine Design. Journal of Virology, 1998, 72, 2246-2252.	3.4	62
60	Cross-recognition of HLA DR4 alloantigen by virus-specific CD8+ T cells: a new paradigm for self-/nonself-recognition. Blood, 2009, 114, 2244-2253.	1.4	61
61	A Safeguard System for Induced Pluripotent Stem Cell-Derived Rejuvenated T Cell Therapy. Stem Cell Reports, 2015, 5, 597-608.	4.8	61
62	The immunology of Epstein–Barr virus infection. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 475-488.	4.0	60
63	Interleukin-1 beta-converting enzyme-like protease cleaves DNA-dependent protein kinase in cytotoxic T cell killing Journal of Experimental Medicine, 1996, 184, 619-626.	8.5	59
64	The influence of antiviral T-cell responses on the alloreactive repertoire. Trends in Immunology, 1999, 20, 203-207.	7.5	57
65	HLA Peptide Length Preferences Control CD8+T Cell Responses. Journal of Immunology, 2013, 191, 561-571.	0.8	57
66	Deficiency of CD8 ⁺ effector memory T cells is an early and persistent feature of multiple sclerosis. Multiple Sclerosis Journal, 2014, 20, 1825-1832.	3.0	57
67	Targeting of EBNA1 for Rapid Intracellular Degradation Overrides the Inhibitory Effects of the Gly-Ala Repeat Domain and Restores CD8+ T Cell Recognition. Journal of Biological Chemistry, 2001, 276, 33353-33360.	3.4	56
68	Targeting Epstein-Barr virus nuclear antigen 1 (EBNA1) through the class II pathway restores immune recognition by EBNA1-specific cytotoxic T lymphocytes: evidence for HLA-DM-independent processing. International Immunology, 1997, 9, 1537-1543.	4.0	55
69	Impact of clonal competition for peptide-MHC complexes on the CD8+ T-cell repertoire selection in a persistent viral infection. Blood, 2008, 111, 4283-4292.	1.4	54
70	Epstein-Barr virus specific T-cell response in nasopharyngeal carcinoma patients. International Journal of Cancer, 1983, 32, 301-305.	5.1	52
71	Strategies Involved in Developing an Effective Vaccine for EBV-Associated Diseases. Advances in Cancer Research, 1996, 69, 213-245.	5.0	52
72	T cell-T cell killing is induced by specific epitopes: evidence for an apoptotic mechanism Journal of Experimental Medicine, 1991, 173, 681-686.	8.5	51

#	Article	IF	CITATIONS
73	Distinct Functions of Tapasin Revealed by Polymorphism in MHC Class I Peptide Loading. Journal of Immunology, 2000, 164, 292-299.	0.8	51
74	Alloreactivity between Disparate Cognate and Allogeneic pMHC-I Complexes Is the Result of Highly Focused, Peptide-dependent Structural Mimicry. Journal of Biological Chemistry, 2006, 281, 34324-34332.	3.4	50
75	Ex Vivo Analysis of T-Cell Responses to Epstein-Barr Virus-Encoded Oncogene Latent Membrane Protein 1 Reveals Highly Conserved Epitope Sequences in Virus Isolates from Diverse Geographic Regions. Journal of Virology, 2003, 77, 7401-7410.	3.4	49
76	Potent T cell response to a class I-binding 13-mer viral epitope and the influence of HLA micropolymorphism in controlling epitope length. European Journal of Immunology, 2004, 34, 2510-2519.	2.9	48
77	A Structural Basis for Varied $\hat{1}\pm\hat{1}^2$ TCR Usage against an Immunodominant EBV Antigen Restricted to a HLA-B8 Molecule. Journal of Immunology, 2012, 188, 311-321.	0.8	48
78	Naive CD8 ⁺ Tâ€eell precursors display structured TCR repertoires and composite antigenâ€driven selection dynamics. Immunology and Cell Biology, 2015, 93, 625-633.	2.3	48
79	The impact of HLA-B micropolymorphism outside primary peptide anchor pockets on the CTL response to CMV. European Journal of Immunology, 2007, 37, 946-953.	2.9	46
80	Longitudinal dynamics of antigen-specific CD8+cytotoxic T lymphocytes following primary Epstein-Barr virus infection. Blood, 2001, 98, 2588-2589.	1.4	45
81	T-cell allorecognition: a case of mistaken identity or déjà vu?. Trends in Immunology, 2008, 29, 220-226.	6.8	44
82	Sequence variation of cytotoxic T cell epitopes in different isolates of Epstein-Barr virus. European Journal of Immunology, 1992, 22, 183-189.	2.9	43
83	Promiscuous CTL Recognition of Viral Epitopes on Multiple Human Leukocyte Antigens: Biological Validation of the Proposed HLA A24 Supertype. Journal of Immunology, 2003, 171, 1407-1412.	0.8	43
84	The impact of HLA class I and EBV latency-II antigen-specific CD8+ T cells on the pathogenesis of EBV+ Hodgkin lymphoma. Clinical and Experimental Immunology, 2016, 183, 206-220.	2.6	38
85	Human leukocyte antigen phenotype imposes complex constraints on the antigen-specific cytotoxic T lymphocyte repertoire. European Journal of Immunology, 1997, 27, 178-182.	2.9	37
86	Selection Pressure-Driven Evolution of the Epstein-Barr Virus-Encoded Oncogene LMP1 in Virus Isolates from Southeast Asia. Journal of Virology, 2004, 78, 7131-7137.	3.4	36
87	T cell allorecognition and MHC restriction—A case of Jekyll and Hyde?. Molecular Immunology, 2008, 45, 583-598.	2.2	36
88	The Impact of a Large and Frequent Deletion in the Human TCR \hat{l}^2 Locus on Antiviral Immunity. Journal of Immunology, 2012, 188, 2742-2748.	0.8	36
89	Highly Divergent T-cell Receptor Binding Modes Underlie Specific Recognition of a Bulged Viral Peptide bound to a Human Leukocyte Antigen Class I Molecule. Journal of Biological Chemistry, 2013, 288, 15442-15454.	3.4	36
90	The peptide length specificity of some HLA class I alleles is very broad and includes peptides of up to 25 amino acids in length. Molecular Immunology, 2009, 46, 1911-1917.	2.2	34

#	Article	IF	CITATIONS
91	Anti-CD8 Antibodies Can Trigger CD8+ T Cell Effector Function in the Absence of TCR Engagement and Improve Peptide–MHCI Tetramer Staining. Journal of Immunology, 2011, 187, 654-663.	0.8	34
92	Nonresponsiveness to an immunodominant Epstein-Barr virus-encoded cytotoxic T-lymphocyte epitope in nuclear antigen 3A: implications for vaccine strategies Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 9478-9482.	7.1	33
93	T-cells behaving badly: structural insights into alloreactivity and autoimmunity. Current Opinion in Immunology, 2008, 20, 575-580.	5.5	33
94	BLT esterase activity as an alternative to chromium release in cytotoxic T cell assays. Journal of Immunological Methods, 1991, 145, 43-53.	1.4	30
95	Antagonism of Antiviral and Allogeneic Activity of a Human Public CTL Clonotype by a Single Altered Peptide Ligand: Implications for Allograft Rejection. Journal of Immunology, 2005, 174, 5593-5601.	0.8	30
96	Widespread Sequence Variation in Epsteinâ€Barr Virus Nuclear Antigen 1 Influences the Antiviral T Cell Response. Journal of Infectious Diseases, 2008, 197, 1594-1597.	4.0	29
97	CD8 T cell deficiency impairs control of Epstein–Barr virus and worsens with age in multiple sclerosis: Figure 1. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 353-354.	1.9	29
98	T-cell grit: large clonal expansions of virus-specific CD8+ T cells can dominate in the peripheral circulation for at least 18 years. Blood, 2005, 106, 4412-4413.	1.4	28
99	The Energetic Basis Underpinning T-cell Receptor Recognition of a Super-bulged Peptide Bound to a Major Histocompatibility Complex Class I Molecule. Journal of Biological Chemistry, 2012, 287, 12267-12276.	3.4	28
100	Bystander apoptosis induced by CD8+ cytotoxic T cell (CTL) clones: implications for CTL lytic mechanisms. International Immunology, 1993, 5, 1049-1058.	4.0	27
101	A mechanism for the HLA-A*01–associated risk for EBV+ Hodgkin lymphoma and infectious mononucleosis. Blood, 2008, 112, 2589-2590.	1.4	27
102	Targeted suppression of autoreactive CD8+ T-cell activation using blocking anti-CD8 antibodies. Scientific Reports, 2016, 6, 35332.	3.3	27
103	Peptide mimic for influenza vaccination using nonnatural combinatorial chemistry. Journal of Clinical Investigation, 2018, 128, 1569-1580.	8.2	27
104	Preferential binding of unusually long peptides to MHC class I and its influence on the selection of target peptides for T cell recognition. Molecular Immunology, 2008, 45, 1818-1824.	2.2	26
105	MHC Class I Molecules with Superenhanced CD8 Binding Properties Bypass the Requirement for Cognate TCR Recognition and Nonspecifically Activate CTLs. Journal of Immunology, 2010, 184, 3357-3366.	0.8	26
106	Antigen-Driven Patterns of TCR Bias Are Shared across Diverse Outcomes of Human Hepatitis C Virus Infection. Journal of Immunology, 2011, 186, 901-912.	0.8	26
107	Human immunology: a case for the ascent of nonâ€furry immunology. Immunology and Cell Biology, 2011, 89, 330-331.	2.3	25
108	Endogenous antigen presentation impacts on T-box transcription factor expression and functional maturation of CD8+ T cells. Blood, 2012, 120, 3237-3245.	1.4	25

#	Article	IF	Citations
109	Identification of human viral proteinâ€derived ligands recognized by individual MHClâ€restricted Tâ€cell receptors. Immunology and Cell Biology, 2016, 94, 573-582.	2.3	25
110	Presentation of endogenous viral peptide epitopes by anti-CD40 stimulated human B cells following recombinant vaccinia infection. Journal of Immunological Methods, 1993, 164, 41-49.	1.4	23
111	High Frequency of Herpesvirus-Specific Clonotypes in the Human T Cell Repertoire Can Remain Stable over Decades with Minimal Turnover. Journal of Virology, 2013, 87, 697-700.	3.4	22
112	Strains of Epstein-Barr virus infecting multiple sclerosis patients. Multiple Sclerosis Journal, 2010, 16, 643-651.	3.0	21
113	Engineering of Isogenic Cells Deficient for MR1 with a CRISPR/Cas9 Lentiviral System: Tools To Study Microbial Antigen Processing and Presentation to Human MR1-Restricted T Cells. Journal of Immunology, 2016, 197, 971-982.	0.8	21
114	The early proximal $\hat{l}\pm\hat{l}^2$ TCR signalosome specifies thymic selection outcome through a quantitative protein interaction network. Science Immunology, 2019, 4, .	11.9	21
115	A Molecular Basis for the Interplay between T Cells, Viral Mutants, and Human Leukocyte Antigen Micropolymorphism. Journal of Biological Chemistry, 2014, 289, 16688-16698.	3.4	20
116	Engineered T Cell Receptors and their Potential in Molecular Medicine. Current Medicinal Chemistry, 2006, 13, 2725-2736.	2.4	19
117	Molecular Imprint of Exposure to Naturally Occurring Genetic Variants of Human Cytomegalovirus on the T cell Repertoire. Scientific Reports, 2014, 4, 3993.	3.3	19
118	Predictable $\hat{l}\pm\hat{l}^2$ T-Cell Receptor Selection toward an HLA-B*3501-Restricted Human Cytomegalovirus Epitope. Journal of Virology, 2007, 81, 7269-7273.	3.4	18
119	Understanding human Tâ€cellâ€mediated immunoregulation through herpesviruses. Immunology and Cell Biology, 2011, 89, 352-358.	2.3	18
120	Cytotoxic T cell recognition of allelic variants of HLA B35 bound to an Epstein-Barr virus epitope: influence of peptide conformation and TCR-peptide interaction. European Journal of Immunology, 1999, 29, 1587-1597.	2.9	17
121	Direct Alloreactivity by Human Cytotoxic T Lymphocytes Can Be Inhibited by Altered Peptide Ligand Antagonism. Blood, 1999, 93, 1020-1024.	1.4	16
122	Decreased CD8+T cell response to Epstein-Barr virus infected B cells in multiple sclerosis is not due to decreased HLA class I expression on B cells or monocytes. BMC Neurology, 2011, 11, 95.	1.8	14
123	Epstein-Barr Virus Isolates Retain Their Capacity To Evade T Cell Immunity through BNLF2a despite Extensive Sequence Variation. Journal of Virology, 2012, 86, 572-577.	3.4	14
124	T Cell Cross-Reactivity between a Highly Immunogenic EBV Epitope and a Self-Peptide Naturally Presented by HLA-B*18:01+ Cells. Journal of Immunology, 2015, 194, 4668-4675.	0.8	14
125	CD8 + Tâ€cell specificity is compromised at a defined MHCI/CD8 affinity threshold. Immunology and Cell Biology, 2017, 95, 68-76.	2.3	14
126	Monoclonal Antibody Against a Melanosomal Protein in Melanotic and Amelanotic Human Melanoma Cells. Pigment Cell & Melanoma Research, 1989, 2, 1-7.	3.6	11

#	Article	IF	CITATIONS
127	Cytotoxic T lymphocyte discrimination between type A Epstein-Barr virus transformants is mapped to an immunodominant epitope in EBNA 3. Journal of General Virology, 1991, 72, 405-409.	2.9	11
128	An HLA-A2-Restricted T-Cell Epitope Mapped to the BNLF2a Immune Evasion Protein of Epstein-Barr Virus That Inhibits TAP. Journal of Virology, 2009, 83, 2783-2788.	3.4	11
129	T Cell Epitope Clustering in the Highly Immunogenic BZLF1 Antigen of Epstein-Barr Virus. Journal of Virology, 2015, 89, 703-712.	3.4	11
130	Immune Parameters to Consider When Choosing T-Cell Receptors for Therapy. Frontiers in Immunology, 2013, 4, 229.	4.8	9
131	Multivariate Analysis Using High Definition Flow Cytometry Reveals Distinct T Cell Repertoires between the Fetal–Maternal Interface and the Peripheral Blood. Frontiers in Immunology, 2014, 5, 33.	4.8	9
132	EBV: Immunobiology and host response. , 0, , 904-914.		8
133	Calcium concentration defines two stages in transformation of lymphocytes by epstein-barr virus. International Journal of Cancer, 1984, 33, 587-590.	5.1	8
134	Patterns of reactivity of Epstein-Barr virus-specific T cells in A-type donor cultures after reactivation with autologous A- or B-type transformants. Cellular Immunology, 1990, 127, 47-55.	3.0	8
135	The role of cytotoxic T lymphocytes in the evolution of genetically stable viruses. Trends in Microbiology, 1997, 5, 64-69.	7.7	8
136	Lymphokine-activated killer (lak) cells discriminate between epstein-barr virus (ebv)-positive burkitt's lymphoma cells. International Journal of Cancer, 1990, 46, 399-404.	5.1	7
137	CD8+ T cells far predominate over CD4+ T cells in healthy immune response to Epstein-Barr virus infected lymphoblastoid cell lines. Blood, 2012, 120, 5085-5087.	1.4	6
138	Coinfection with Human Cytomegalovirus Genetic Variants in Transplant Recipients and Its Impact on Antiviral T Cell Immune Reconstitution. Journal of Virology, 2016, 90, 7497-7507.	3.4	6
139	Sufficiency for inducible Caspase-9 safety switch in human pluripotent stem cells and disease cells. Gene Therapy, 2020, 27, 525-534.	4.5	6
140	Oligopeptide Induction of a Secondary Cytotoxic T-cell Response to Epstein-Barr Virus In Vitro. Scandinavian Journal of Immunology, 1991, 33, 411-420.	2.7	4
141	Differential Splicing of Antigen-Encoding RNA Reduces Endogenous Epitope Presentation That Regulates the Expansion and Cytotoxicity of T Cells. Journal of Immunology, 2000, 165, 1840-1846.	0.8	4
142	Tracking the repertoire of human adult and neonatal <scp>T</scp> cells during <i>ex vivo</i> amplification. British Journal of Haematology, 2012, 159, 370-373.	2.5	4
143	Interleukin-2 receptors in infectious mononucleosis. Immunology Letters, 1989, 23, 139-142.	2.5	3
144	Cross-reactive recognition of viral and self-peptides by a "public―T cell receptor expressed by cytotoxic T lymphocytes expanded in multiple unrelated individuals. Immunology Letters, 2004, 93, 7-9.	2.5	3

#	Article	IF	CITATIONS
145	T Cell Receptor Bias in Humans. Current Immunology Reviews, 2009, 5, 10-21.	1.2	3
146	Cytotoxic T cell recognition of allelic variants of HLA B35 bound to an Epstein-Barr virus epitope: influence of peptide conformation and TCR-peptide interaction. European Journal of Immunology, 1999, 29, 1587-1597.	2.9	3
147	Inhibition of HLA B8-restricted recognition by unrelated peptides: evidence for allosteric inhibition. Immunology Letters, 1991, 30, 339-344.	2.5	2
148	T lymphocytes in infectious mononucleosis; Effect of ILâ€2 on the outgrowth of Epsteinâ€Barr virusâ€infected cells. Immunology and Cell Biology, 1989, 67, 49-55.	2.3	0
149	Immune selection and virus evolution: Be cautious of paradigms. Trends in Microbiology, 1997, 5, 92-93.	7.7	O
150	Missense single nucleotide polymorphisms in the human T cell receptor loci control variable gene usage in the T cell repertoire. British Journal of Haematology, 2014, 166, 148-152.	2.5	0
151	The Immune Response to Epstein–Barr Virus. Infectious Disease and Therapy, 2006, , 79-98.	0.0	0
152	HLA-Class I Alleles Impact Susceptibility To EBV+ Classical Hodgkin Lymphoma By Altering EBV Latent Antigen-Specific CD8+ T-Cell Immune Hierarchies. Blood, 2013, 122, 630-630.	1.4	0
153	Direct Alloreactivity by Human Cytotoxic T Lymphocytes Can Be Inhibited by Altered Peptide Ligand Antagonism. Blood, 1999, 93, 1020-1024.	1.4	0