James Maynard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3079457/publications.pdf

Version: 2024-02-01

136950 118850 6,139 64 32 62 h-index citations g-index papers 65 65 65 4817 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mineralogy, geochemistry, and stable isotope characteristics of barite deposits from Wadi ElÂMingar, North Eastern Jordan. Neues Jahrbuch Fur Geologie Und Palaontologie - Abhandlungen, 2022, 303, 123-142.	0.4	1
2	Origin of the Oligocene manganese deposit at Obrochishte (Bulgaria): Insights from C, O, Fe, Sr, Nd, and Pb isotopes. Ore Geology Reviews, 2020, 122, 103550.	2.7	12
3	The Ordovician iron ore of the Anti-Atlas, Morocco: Environment and dynamics of depositional process. Ore Geology Reviews, 2020, 120, 103447.	2.7	5
4	A paleosol record of the evolution of Cr redox cycling and evidence for an increase in atmospheric oxygen during the Neoproterozoic. Geobiology, 2019, 17, 579-593.	2.4	27
5	Organic and Inorganic Pollutant Concentrations Suggest Anthropogenic Contamination of Soils Along the Manali-Leh Highway, Northwestern Himalaya, India. Archives of Environmental Contamination and Toxicology, 2017, 72, 505-518.	4.1	4
6	Chemical, mineralogical and textural properties of the Kope Formation mudstones: How they affect its durability. Engineering Geology, 2017, 228, 312-322.	6. 3	20
7	Manganese deposition in drinking water distribution systems. Science of the Total Environment, 2016, 541, 184-193.	8.0	89
8	Strontium adsorption and desorption reactions in model drinking water distribution systems. Journal of Water Supply: Research and Technology - AQUA, 2014, 63, 449-460.	1.4	5
9	Mass-independently fractionated sulfur in Archean paleosols: A large reservoir of negative î"33S anomaly on the early Earth. Chemical Geology, 2013, 362, 74-81.	3.3	12
10	Strontium Concentrations in Corrosion Products from Residential Drinking Water Distribution Systems. Environmental Science & E	10.0	25
11	Evidence for a diachronous Late Permian marine crisis from the Canadian Arctic region. Bulletin of the Geological Society of America, 2012, 124, 1424-1448.	3.3	92
12	Analytical Methods for Sulfur Determination in Glasses, Rocks, Minerals and Fluid Inclusions. Reviews in Mineralogy and Geochemistry, 2011, 73, 9-39.	4.8	16
13	Evidence for volcanic ash fall in the Maya Lowlands from a reservoir at Tikal, Guatemala. Journal of Archaeological Science, 2011, 38, 2925-2938.	2.4	31
14	Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian–Triassic Panthalassic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308, 65-83.	2.3	330
15	An investigation of aspects of mine waste from a kyanite mine, Central Virginia, USA. Environmental Earth Sciences, 2010, 61, 93-106.	2.7	7
16	Speciation and distribution of vanadium in drinking water iron pipe corrosion by-products. Science of the Total Environment, 2010, 408, 5845-5853.	8.0	45
17	Changes in productivity and redox conditions in the Panthalassic Ocean during the latest Permian. Geology, 2010, 38, 187-190.	4.4	158
18	The Chemistry of Manganese Ores through Time: A Signal of Increasing Diversity of Earth-Surface Environments. Economic Geology, 2010, 105, 535-552.	3.8	170

#	Article	IF	CITATIONS
19	Steps in the History of Mudstone Investigationsâ€"A Timeline, 1556 Through 2007. Earth Sciences History, 2009, 28, 84-107.	0.2	3
20	Physiochemical characterization of five iron tubercles from a single drinking water distribution system: Possible new insights on their formation and growth. Corrosion Science, 2008, 50, 2030-2039.	6.6	98
21	Trace-metal covariation as a guide to water-mass conditions in ancient anoxic marine environments. , 2008, 4, 872.		165
22	The Permian–Triassic boundary at Nhi Tao, Vietnam: Evidence for recurrent influx of sulfidic watermasses to a shallow-marine carbonate platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252, 304-327.	2.3	135
23	Barite-forming environments along a rifted continental margin, Southern California Borderland. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54, 1327-1349.	1.4	49
24	Investigations of subsurface flow constructed wetlands and associated geomaterial resources in the Akumal and Reforma regions, Quintana Roo, Mexico. Environmental Geology, 2007, 53, 709-726.	1.2	14
25	Sourcing Volcanic Millstones from Greco-Roman Sites in Albania. Journal of Field Archaeology, 2006, 31, 137-146.	1.3	1
26	Superheavy S isotopes from glacier-associated sediments of the Neoproterozoic of south China: Oceanic anoxia or sulfate limitation?. , 2006, , .		8
27	A fluid mixing model for copper mineralization at Konkola North, Zambian Copperbelt. Journal of African Earth Sciences, 2005, 42, 95-118.	2.0	16
28	Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 2004, 206, 289-318.	3.3	1,230
29	Heavy metal contamination in highway soils. Comparison of Corpus Christi, Texas and Cincinnati, Ohio shows organic matter is key to mobility. Clean Technologies and Environmental Policy, 2003, 4, 235-245.	4.1	80
30	Secondary porosity formed by deep meteoric leaching: Botucatu eolianite, southern South America. AAPG Bulletin, 2003, 87, 1073-1082.	1.5	42
31	Combining Subsidence Analysis and Detrital Modes of Sandstones to Constrain Basin History: An Example from the Eastern Pontides of Turkey. International Geology Review, 2003, 45, 329-345.	2.1	2
32	Use of statistical analysis to formulate conceptual models of geochemical behavior: water chemical data from the Botucatu aquifer in São Paulo state, Brazil. Journal of Hydrology, 2001, 250, 78-97.	5.4	138
33	Reflectance of dispersed vitrinite in shales hosting Pb–Zn–Cu ore deposits in western Cuba: comparison with clay crystallinity. International Journal of Coal Geology, 2001, 47, 161-170.	5.0	8
34	Title is missing!. Water, Air, and Soil Pollution, 2001, 132, 293-314.	2.4	168
35	The use of sulfur isotopes to monitor the effectiveness of constructed wetlands in controlling acid mine drainage. Environmental Engineering and Policy, 1999, 1, 223-233.	0.1	13
36	Groundwater models and wellfield management: a case study. Environmental Engineering and Policy, 1998, 1, 155-164.	0.1	4

#	Article	IF	Citations
37	Basement Unconformity Control on Alteration, St. Francois Mountains, SE Missouri. Journal of Geology, 1996, 104, 55-70.	1.4	17
38	Tectonic subsidence analysis in the characterization of sedimentary ore deposits; examples from the Witwatersrand (Au), White Pine (Cu), and Molango (Mn). Economic Geology, 1995, 90, 37-50.	3.8	12
39	A Paleosol Developed on Hydrothermally Altered Granite from the Hinterland of the Witwatersrand Basin: Characteristics of a Source of Basin Fill. Journal of Geology, 1995, 103, 357-377.	1.4	33
40	Sr isotopes of bedded barites; guide to distinguishing basins with Pb-Zn mineralization. Economic Geology, 1995, 90, 2058-2064.	3.8	32
41	Sediment- and basalt-hosted regoliths in the Huronian supergroup: role of parent lithology in middle Precambrian weathering profiles. Canadian Journal of Earth Sciences, 1993, 30, 60-76.	1.3	36
42	Petrology, mineralogy, and geochemistry of sandstones of the lower Huronian Matinenda Formation: resemblance to underlying basement rocks. Canadian Journal of Earth Sciences, 1993, 30, 1209-1223.	1.3	14
43	Chemistry of Modern Soils as a Guide to Interpreting Precambrian Paleosols. Journal of Geology, 1992, 100, 279-289.	1.4	306
44	Multiple alteration events in the history of a sub-Huronian regolith at Lauzon Bay, Ontario. Canadian Journal of Earth Sciences, 1992, 29, 432-445.	1.3	37
45	Bedded barite deposits in the United States, Canada, Germany, and China; two major types based on tectonic setting; a reply. Economic Geology, 1992, 87, 200-201.	3.8	0
46	Bedded barite deposits in the United States, Canada, Germany, and China; two major types based on tectonic setting. Economic Geology, 1991, 86, 364-376.	3.8	51
47	Chemistry of sands from the modern Indus River and the Archean Witwatersrand basin: Implications for the composition of the Archean atmosphere. Geology, 1991, 19, 265.	4.4	31
48	Stratigraphic Control of Chemistry and Mineralogy in Metamorphosed Witwatersrand Quartzites. Journal of Geology, 1990, 98, 329-341.	1.4	28
49	Geochemical and Ndî—,Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations. Geochimica Et Cosmochimica Acta, 1990, 54, 2015-2050.	3.9	936
50	Effects of sedimentary sorting on neodymium isotopes in deep-sea turbidites. Nature, 1989, 337, 547-549.	27.8	83
51	Isotopic evidence for organic matter oxidation by manganese reduction in the formation of stratiform manganese carbonate ore. Geochimica Et Cosmochimica Acta, 1988, 52, 2679-2685.	3.9	119
52	The iron ores and associated sediments of the Chichali formation (Oxfordian to Valanginian) of the Trans-Indus Salt Range, Pakistan. Journal of the Geological Society, 1987, 144, 107-114.	2.1	25
53	Geochemistry of oolitic iron ores, an electron microprobe study. Economic Geology, 1986, 81, 1473-1483.	3.8	67
54	Petrography of modern marine sands from the Peru-Chile Trench and adjacent areas+. Sedimentology, 1984, 31, 83-89.	3.1	46

#	Article	IF	CITATIONS
55	Composition of plagioclase feldspar in modern deep-sea sands: relationship to tectonic setting. Sedimentology, 1984, 31, 493-501.	3.1	26
56	A bauxitic paleosol in phosphate-bearing strata of northern Pakistan. Economic Geology, 1983, 78, 344-347.	3.8	4
57	Extension of Berner's "New geochemical classification of sedimentary environments" to ancient sediments. Journal of Sedimentary Research, 1982, 52, 1325-1331.	1.6	58
58	Factors controlling enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks. Geochimica Et Cosmochimica Acta, 1982, 46, 2547-2560.	3.9	388
59	Composition of modern deep-sea sands from arc-related basins. Geological Society Special Publication, 1982, 10, 551-561.	1.3	173
60	Detrital modes of recent deep-sea sands and their relation to tectonic setting: a first approximation. Sedimentology, 1981, 28, 75-83.	3.1	115
61	Carbon isotopes as indicators of dispersal patterns in Devonian-Mississippian shales of the Appalachian Basin. Geology, 1981, 9, 262.	4.4	60
62	The long-term buffering of the oceans. Geochimica Et Cosmochimica Acta, 1976, 40, 1523-1532.	3.9	35
63	Kinetics of silica sorption by kaolinite with application to seawater chemistry. Numerische Mathematik, 1975, 275, 1028-1048.	1.4	18
64	Marine Sediments: Dating by the Racemization of Amino Acids. Science, 1970, 170, 730-732.	12.6	129