Keiichi Yoshimatsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3078955/publications.pdf

Version: 2024-02-01

361413 434195 1,543 31 20 31 citations h-index g-index papers 33 33 33 1910 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: The control of particle size suitable for different analytical applications. Analytica Chimica Acta, 2007, 584, 112-121.	5.4	382
2	Temperatureâ€Responsive "Catch and Release―of Proteins by using Multifunctional Polymerâ€Based Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 2405-2408.	13.8	145
3	A polymer nanoparticle with engineered affinity for a vascular endothelial growth factor (VEGF165). Nature Chemistry, 2017, 9, 715-722.	13.6	125
4	Selective molecular adsorption using electrospun nanofiber affinity membranes. Biosensors and Bioelectronics, 2008, 23, 1208-1215.	10.1	121
5	Characterization of QCM sensor surfaces coated with molecularly imprinted nanoparticles. Biosensors and Bioelectronics, 2008, 23, 1908-1914.	10.1	110
6	Polymer Nanoparticle–Protein Interface. Evaluation of the Contribution of Positively Charged Functional Groups to Protein Affinity. ACS Applied Materials & Samp; Interfaces, 2013, 5, 374-379.	8.0	61
7	Polymer Nanoparticle Hydrogels with Autonomous Affinity Switching for the Protection of Proteins from Thermal Stress. Angewandte Chemie - International Edition, 2014, 53, 9275-9279.	13.8	55
8	Particle Deformation and Concentration Polarization in Electroosmotic Transport of Hydrogels through Pores. ACS Nano, 2013, 7, 3720-3728.	14.6	49
9	"Clickable―affinity ligands for effective separation of glycoproteins. Journal of Chromatography A, 2010, 1217, 3635-3641.	3.7	47
10	Preparation of abiotic polymer nanoparticles for sequestration and neutralization of a target peptide toxin. Nature Protocols, 2015, 10, 595-604.	12.0	46
11	Epitope Discovery for a Synthetic Polymer Nanoparticle: A New Strategy for Developing a Peptide Tag. Journal of the American Chemical Society, 2014, 136, 1194-1197.	13.7	39
12	Peptide-imprinted polymer microspheres prepared by precipitation polymerization using a single bi-functional monomer. Analyst, The, 2009, 134, 719.	3.5	38
13	Preparation of molecularly imprinted polymers in supercritical carbon dioxide. Journal of Applied Polymer Science, 2006, 102, 2863-2867.	2.6	37
14	A simple method for preparation of molecularly imprinted nanofiber materials with signal transduction ability. Chemical Communications, 2008, , 2022.	4.1	33
15	An Fe–S cluster in the conserved Cys-rich region in the catalytic subunit of FAD-dependent dehydrogenase complexes. Bioelectrochemistry, 2016, 112, 178-183.	4.6	31
16	Sequestering and inhibiting a vascular endothelial growth factor in vivo by systemic administration of a synthetic polymer nanoparticle. Journal of Controlled Release, 2019, 295, 13-20.	9.9	29
17	Molecularly imprinted polymers for histamine recognition in aqueous environment. Amino Acids, 2012, 43, 2113-2124.	2.7	27
18	Synthetic hydrogel nanoparticles for sepsis therapy. Nature Communications, 2021, 12, 5552.	12.8	27

#	Article	IF	CITATIONS
19	Measuring Melittin Uptake into Hydrogel Nanoparticles with Near-Infrared Single Nanoparticle Surface Plasmon Resonance Microscopy. Analytical Chemistry, 2015, 87, 4973-4979.	6.5	26
20	Influence of template/functional monomer/crossâ€linking monomer ratio on particle size and binding properties of molecularly imprinted nanoparticles. Journal of Applied Polymer Science, 2012, 124, 1249-1255.	2.6	20
21	X-ray structure of the direct electron transfer-type FAD glucose dehydrogenase catalytic subunit complexed with a hitchhiker protein. Acta Crystallographica Section D: Structural Biology, 2019, 75, 841-851.	2.3	18
22	Structure of electron collection electrode in dye-sensitized nanocrystalline TiO2. Electrochimica Acta, 2013, 87, 309-316.	5.2	12
23	Engineering the Binding Kinetics of Synthetic Polymer Nanoparticles for siRNA Delivery. Biomacromolecules, 2019, 20, 3648-3657.	5. 4	12
24	Metal-Free Polymer-Based Affinity Medium for Selective Purification of His6-Tagged Proteins. Biomacromolecules, 2021, 22, 1695-1705.	5.4	8
25	Elucidation of the intra- and inter-molecular electron transfer pathways of glucoside 3-dehydrogenase. Bioelectrochemistry, 2018, 122, 115-122.	4.6	6
26	Effective charge collection in dye-sensitized nanocrystalline TiO 2. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, 4, 015006.	1.5	4
27	Verification of the neural network training process for spectrum-based chemical substructure prediction using metamorphic testing. Journal of Computational Science, 2021, 55, 101456.	2.9	4
28	A new approach for IR spectra matching using normalized local change. Analytica Chimica Acta, 2020, 1103, 49-57.	5.4	3
29	Characterization of molecularly imprinted polymer nanoparticles by photon correlation spectroscopy. Journal of Molecular Recognition, 2014, 27, 714-721.	2.1	2
30	Effect of vortexâ€induced physical stress on fluorescent properties of dyeâ€containing poly(ethylene) Tj ETQq0	0 0 rgBT /	Overlock 10 ⁻
0.4	Discourse Discourse Ata Consess 2021		