Willy Hugo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3078353/publications.pdf

Version: 2024-02-01

236925 289244 12,413 41 25 40 citations h-index g-index papers 47 47 47 19680 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Pathogenic TNF- $\hat{l}\pm$ drives peripheral nerve inflammation in an Aire-deficient model of autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	13
2	Single-cell RNA sequencing in silent corticotroph tumors confirms impaired POMC processing and provides new insights into their invasive behavior. European Journal of Endocrinology, 2022, 187, 49-64.	3.7	10
3	The roles of TGF- \hat{l}^2 and VEGF pathways in the suppression of antitumor immunity in melanoma and other solid tumors. , 2022, 240, 108211.		21
4	Purine nucleoside phosphorylase enables dual metabolic checkpoints that prevent T cell immunodeficiency and TLR7-associated autoimmunity. Journal of Clinical Investigation, 2022, 132, .	8.2	12
5	Durable Suppression of Acquired MEK Inhibitor Resistance in Cancer by Sequestering MEK from ERK and Promoting Antitumor T-cell Immunity. Cancer Discovery, 2021, 11, 714-735.	9.4	45
6	A human ACTH-secreting corticotroph tumoroid model. EBioMedicine, 2021, 66, 103294.	6.1	8
7	Wound healing with topical BRAF inhibitor therapy in a diabetic model suggests tissue regenerative effects. PLoS ONE, 2021, 16, e0252597.	2.5	4
8	Neoadjuvant PD-1 blockade induces T cell and cDC1 activation but fails to overcome the immunosuppressive tumor associated macrophages in recurrent glioblastoma. Nature Communications, 2021, 12, 6938.	12.8	93
9	The Association of <i>MUC16</i> Mutation with Tumor Mutation Burden and Its Prognostic Implications in Cutaneous Melanoma. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1792-1799.	2.5	15
10	Multimodel preclinical platform predicts clinical response of melanoma to immunotherapy. Nature Medicine, 2020, 26, 781-791.	30.7	75
11	IMMU-30. UPREGULATED T CELL AND INTERFERON-Γ-RELATED GENE EXPRESSION IS ASSOCIATED WITH INCREASED SURVIVAL IN RECURRENT PEDIATRIC HIGH-GRADE GLIOMA. Neuro-Oncology, 2020, 22, iii365-iii366.	1.2	0
12	Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nature Medicine, 2019, 25, 477-486.	30.7	932
13	Exploiting Drug Addiction Mechanisms to Select against MAPKi-Resistant Melanoma. Cancer Discovery, 2018, 8, 74-93.	9.4	89
14	The Prognostic Significance of Low-Frequency Somatic Mutations in Metastatic Cutaneous Melanoma. Frontiers in Oncology, 2018, 8, 584.	2.8	14
15	Interferon Receptor Signaling Pathways Regulating PD-L1 and PD-L2 Expression. Cell Reports, 2017, 19, 1189-1201.	6.4	1,256
16	Primary Resistance to PD-1 Blockade Mediated by <i>JAK1/2</i> Mutations. Cancer Discovery, 2017, 7, 188-201.	9.4	997
17	Recurrent Tumor Cell–Intrinsic and –Extrinsic Alterations during MAPKi-Induced Melanoma Regression and Early Adaptation. Cancer Discovery, 2017, 7, 1248-1265.	9.4	134
18	JUN dependency in distinct early and late BRAF inhibition adaptation states of melanoma. Cell Discovery, 2016, 2, 16028.	6.7	57

#	Article	IF	CITATIONS
19	Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histoneAdemethylation. Nature Cell Biology, 2016, 18, 1090-1101.	10.3	291
20	Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma. New England Journal of Medicine, 2016, 375, 819-829.	27.0	2,430
21	Cutaneous wound healing through paradoxical MAPK activation by BRAF inhibitors. Nature Communications, 2016, 7, 12348.	12.8	52
22	Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell, 2016, 165, 35-44.	28.9	2,437
23	Innate resistance of PD-1 blockade through loss of function mutations in JAK resulting in inability to express PD-L1 upon interferon exposure. , 2015, 3, .		23
24	Acquired BRAF inhibitor resistance: A multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. European Journal of Cancer, 2015, 51, 2792-2799.	2.8	269
25	Tunable-Combinatorial Mechanisms of Acquired Resistance Limit the Efficacy of BRAF/MEK Cotargeting but Result in Melanoma Drug Addiction. Cancer Cell, 2015, 27, 240-256.	16.8	299
26	Non-genomic and Immune Evolution of Melanoma Acquiring MAPKi Resistance. Cell, 2015, 162, 1271-1285.	28.9	516
27	Mixed lineage kinases activate MEK independently of RAF to mediate resistance to RAF inhibitors. Nature Communications, 2014, 5, 3901.	12.8	68
28	Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nature Communications, 2014, 5, 5712.	12.8	503
29	A Novel AKT1 Mutant Amplifies an Adaptive Melanoma Response to BRAF Inhibition. Cancer Discovery, 2014, 4, 69-79.	9.4	141
30	Acquired Resistance and Clonal Evolution in Melanoma during BRAF Inhibitor Therapy. Cancer Discovery, 2014, 4, 80-93.	9.4	836
31	Response of <i>BRAF</i> -Mutant Melanoma to BRAF Inhibition Is Mediated by a Network of Transcriptional Regulators of Glycolysis. Cancer Discovery, 2014, 4, 423-433.	9.4	242
32	Stringent DDI-based Prediction of H. sapiens-M. tuberculosis H37Rv Protein-Protein Interactions. BMC Systems Biology, 2013, 7, S6.	3.0	34
33	Discovering Interacting Domains and Motifs in Protein–Protein Interactions. Methods in Molecular Biology, 2013, 939, 9-20.	0.9	4
34	Simultaneously Learning DNA Motif Along with Its Position and Sequence Rank Preferences Through Expectation Maximization Algorithm. Journal of Computational Biology, 2013, 20, 237-248.	1.6	10
35	Simultaneously Learning DNA Motif along with Its Position and Sequence Rank Preferences through EM Algorithm. Lecture Notes in Computer Science, 2012, , 355-370.	1.3	3
36	D-SLIMMER: Domain–SLiM Interaction Motifs Miner for Sequence Based Protein–Protein Interaction Data. Journal of Proteome Research, 2011, 10, 5285-5295.	3.7	6

WILLY HUGO

#	Article	IF	CITATIONS
37	SLiM on Diet: finding short linear motifs on domain interaction interfaces in Protein Data Bank. Bioinformatics, 2010, 26, 1036-1042.	4.1	15
38	A Probabilistic Graphâ€Theoretic Approach to Integrate Multiple Predictions for the Protein–Protein Subnetwork Prediction Challenge. Annals of the New York Academy of Sciences, 2009, 1158, 224-233.	3.8	20
39	A Faster and More Space-Efficient Algorithm for Inferring Arc-Annotations of RNA Sequences through Alignment. Algorithmica, 2006, 46, 223-245.	1.3	7
40	A correlated motif approach for finding short linear motifs from protein interaction networks. BMC Bioinformatics, 2006, 7, 502.	2.6	40
41	ADAPTIVE CONTROL OF HYBRIDIZATION NOISE IN DNA SEQUENCING-BY-HYBRIDIZATION. Journal of Bioinformatics and Computational Biology, 2005, 03, 79-98.	0.8	1