Willy Hugo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3078353/publications.pdf

Version: 2024-02-01

236925 289244 12,413 41 25 40 citations h-index g-index papers 47 47 47 19680 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell, 2016, 165, 35-44.	28.9	2,437
2	Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma. New England Journal of Medicine, 2016, 375, 819-829.	27.0	2,430
3	Interferon Receptor Signaling Pathways Regulating PD-L1 and PD-L2 Expression. Cell Reports, 2017, 19, 1189-1201.	6.4	1,256
4	Primary Resistance to PD-1 Blockade Mediated by <i>JAK1/2</i> Mutations. Cancer Discovery, 2017, 7, 188-201.	9.4	997
5	Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nature Medicine, 2019, 25, 477-486.	30.7	932
6	Acquired Resistance and Clonal Evolution in Melanoma during BRAF Inhibitor Therapy. Cancer Discovery, 2014, 4, 80-93.	9.4	836
7	Non-genomic and Immune Evolution of Melanoma Acquiring MAPKi Resistance. Cell, 2015, 162, 1271-1285.	28.9	516
8	Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nature Communications, 2014, 5, 5712.	12.8	503
9	Tunable-Combinatorial Mechanisms of Acquired Resistance Limit the Efficacy of BRAF/MEK Cotargeting but Result in Melanoma Drug Addiction. Cancer Cell, 2015, 27, 240-256.	16.8	299
10	Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histoneÂdemethylation. Nature Cell Biology, 2016, 18, 1090-1101.	10.3	291
11	Acquired BRAF inhibitor resistance: A multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. European Journal of Cancer, 2015, 51, 2792-2799.	2.8	269
12	Response of <i>BRAF</i> -Mutant Melanoma to BRAF Inhibition Is Mediated by a Network of Transcriptional Regulators of Glycolysis. Cancer Discovery, 2014, 4, 423-433.	9.4	242
13	A Novel AKT1 Mutant Amplifies an Adaptive Melanoma Response to BRAF Inhibition. Cancer Discovery, 2014, 4, 69-79.	9.4	141
14	Recurrent Tumor Cell–Intrinsic and –Extrinsic Alterations during MAPKi-Induced Melanoma Regression and Early Adaptation. Cancer Discovery, 2017, 7, 1248-1265.	9.4	134
15	Neoadjuvant PD-1 blockade induces T cell and cDC1 activation but fails to overcome the immunosuppressive tumor associated macrophages in recurrent glioblastoma. Nature Communications, 2021, 12, 6938.	12.8	93
16	Exploiting Drug Addiction Mechanisms to Select against MAPKi-Resistant Melanoma. Cancer Discovery, 2018, 8, 74-93.	9.4	89
17	Multimodel preclinical platform predicts clinical response of melanoma to immunotherapy. Nature Medicine, 2020, 26, 781-791.	30.7	75
18	Mixed lineage kinases activate MEK independently of RAF to mediate resistance to RAF inhibitors. Nature Communications, 2014, 5, 3901.	12.8	68

#	Article	IF	CITATIONS
19	JUN dependency in distinct early and late BRAF inhibition adaptation states of melanoma. Cell Discovery, 2016, 2, 16028.	6.7	57
20	Cutaneous wound healing through paradoxical MAPK activation by BRAF inhibitors. Nature Communications, 2016, 7, 12348.	12.8	52
21	Durable Suppression of Acquired MEK Inhibitor Resistance in Cancer by Sequestering MEK from ERK and Promoting Antitumor T-cell Immunity. Cancer Discovery, 2021, 11, 714-735.	9.4	45
22	A correlated motif approach for finding short linear motifs from protein interaction networks. BMC Bioinformatics, 2006, 7, 502.	2.6	40
23	Stringent DDI-based Prediction of H. sapiens-M. tuberculosis H37Rv Protein-Protein Interactions. BMC Systems Biology, 2013, 7, S6.	3.0	34
24	Innate resistance of PD-1 blockade through loss of function mutations in JAK resulting in inability to express PD-L1 upon interferon exposure. , $2015, 3, .$		23
25	The roles of TGF- \hat{l}^2 and VEGF pathways in the suppression of antitumor immunity in melanoma and other solid tumors. , 2022, 240, 108211.		21
26	A Probabilistic Graphâ€Theoretic Approach to Integrate Multiple Predictions for the Protein–Protein Subnetwork Prediction Challenge. Annals of the New York Academy of Sciences, 2009, 1158, 224-233.	3.8	20
27	SLiM on Diet: finding short linear motifs on domain interaction interfaces in Protein Data Bank. Bioinformatics, 2010, 26, 1036-1042.	4.1	15
28	The Association of <i>MuC16</i> Mutation with Tumor Mutation Burden and Its Prognostic Implications in Cutaneous Melanoma. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1792-1799.	2.5	15
29	The Prognostic Significance of Low-Frequency Somatic Mutations in Metastatic Cutaneous Melanoma. Frontiers in Oncology, 2018, 8, 584.	2.8	14
30	Pathogenic TNF- \hat{l}_{\pm} drives peripheral nerve inflammation in an Aire-deficient model of autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	13
31	Purine nucleoside phosphorylase enables dual metabolic checkpoints that prevent T cell immunodeficiency and TLR7-associated autoimmunity. Journal of Clinical Investigation, 2022, 132, .	8.2	12
32	Simultaneously Learning DNA Motif Along with Its Position and Sequence Rank Preferences Through Expectation Maximization Algorithm. Journal of Computational Biology, 2013, 20, 237-248.	1.6	10
33	Single-cell RNA sequencing in silent corticotroph tumors confirms impaired POMC processing and provides new insights into their invasive behavior. European Journal of Endocrinology, 2022, 187, 49-64.	3.7	10
34	A human ACTH-secreting corticotroph tumoroid model. EBioMedicine, 2021, 66, 103294.	6.1	8
35	A Faster and More Space-Efficient Algorithm for Inferring Arc-Annotations of RNA Sequences through Alignment. Algorithmica, 2006, 46, 223-245.	1.3	7
36	D-SLIMMER: Domain–SLiM Interaction Motifs Miner for Sequence Based Protein–Protein Interaction Data. Journal of Proteome Research, 2011, 10, 5285-5295.	3.7	6

WILLY HUGO

#	Article	IF	CITATIONS
37	Discovering Interacting Domains and Motifs in Protein–Protein Interactions. Methods in Molecular Biology, 2013, 939, 9-20.	0.9	4
38	Wound healing with topical BRAF inhibitor therapy in a diabetic model suggests tissue regenerative effects. PLoS ONE, 2021, 16, e0252597.	2.5	4
39	Simultaneously Learning DNA Motif along with Its Position and Sequence Rank Preferences through EM Algorithm. Lecture Notes in Computer Science, 2012, , 355-370.	1.3	3
40	ADAPTIVE CONTROL OF HYBRIDIZATION NOISE IN DNA SEQUENCING-BY-HYBRIDIZATION. Journal of Bioinformatics and Computational Biology, 2005, 03, 79-98.	0.8	1
41	IMMU-30. UPREGULATED T CELL AND INTERFERON-Γ-RELATED GENE EXPRESSION IS ASSOCIATED WITH INCREASED SURVIVAL IN RECURRENT PEDIATRIC HIGH-GRADE GLIOMA. Neuro-Oncology, 2020, 22, iii365-iii366.	1.2	0