Eric M Kramer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3077151/publications.pdf Version: 2024-02-01

FDIC M KDAMED

#	Article	IF	CITATIONS
1	Oxygen uptake rates have contrasting responses to temperature in the root meristem and elongation zone. Physiologia Plantarum, 2022, 174, e13682.	5.2	2
2	Scaling Laws for Mitotic Chromosomes. Frontiers in Cell and Developmental Biology, 2021, 9, 684278.	3.7	7
3	Flowering plant immune repertoires expand under mycorrhizal symbiosis. Plant Direct, 2019, 3, e00125.	1.9	2
4	A Transcriptomics and Comparative Genomics Analysis Reveals Gene Families with a Role in Body Plan Complexity. Frontiers in Plant Science, 2017, 8, 869.	3.6	5
5	Do Vacuoles Obscure the Evidence for Auxin Homeostasis?. Molecular Plant, 2016, 9, 4-6.	8.3	15
6	Auxin metabolism rates and implications for plant development. Frontiers in Plant Science, 2015, 6, 150.	3.6	54
7	Systems Analysis of Auxin Transport in the <i>Arabidopsis</i> Root Apex Â. Plant Cell, 2014, 26, 862-875.	6.6	190
8	The carrier AUXIN RESISTANT (AUX1) dominates auxin flux into Arabidopsis protoplasts. New Phytologist, 2014, 204, 536-544.	7.3	35
9	Osmosis is not driven by water dilution. Trends in Plant Science, 2013, 18, 195-197.	8.8	24
10	Sequential induction of auxin efflux and influx carriers regulates lateral root emergence. Molecular Systems Biology, 2013, 9, 699.	7.2	104
11	Five popular misconceptions about osmosis. American Journal of Physics, 2012, 80, 694-699.	0.7	33
12	AuxV: a database of auxin transport velocities. Trends in Plant Science, 2011, 16, 461-463.	8.8	40
13	Regulation of Solute Flux through Plasmodesmata in the Root Meristem Â. Plant Physiology, 2011, 155, 1817-1826.	4.8	109
14	The Advantages of a Tapered Whisker. PLoS ONE, 2010, 5, e8806.	2.5	80
15	Auxin transport through non-hair cells sustains root-hair development. Nature Cell Biology, 2009, 11, 78-84.	10.3	212
16	Auxin-regulated cell polarity: an inside job?. Trends in Plant Science, 2009, 14, 242-247.	8.8	61
17	The auxin influx carrier LAX3 promotes lateral root emergence. Nature Cell Biology, 2008, 10, 946-954.	10.3	715
18	Auxin Gradients Are Associated with Polarity Changes in Trees. Science, 2008, 320, 1610-1610.	12.6	20

ERIC M KRAMER

#	Article	IF	CITATIONS
19	Computer models of auxin transport: a review and commentary. Journal of Experimental Botany, 2008, 59, 45-53.	4.8	56
20	Measurement of diffusion within the cell wall in living roots of Arabidopsis thaliana. Journal of Experimental Botany, 2007, 58, 3005-3015.	4.8	73
21	Auxin transport: a field in flux. Trends in Plant Science, 2006, 11, 382-386.	8.8	211
22	Wood Grain Pattern Formation: A Brief Review. Journal of Plant Growth Regulation, 2006, 25, 290-301.	5.1	27
23	How Far Can a Molecule of Weak Acid Travel in the Apoplast or Xylem? Â. Plant Physiology, 2006, 141, 1233-1236.	4.8	68
24	Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nature Cell Biology, 2005, 7, 1057-1065.	10.3	514
25	Wood grain patterns at branch junctions: modeling and implications. Trees - Structure and Function, 2004, 18, 493.	1.9	13
26	PIN and AUX/LAX proteins: their role in auxin accumulation. Trends in Plant Science, 2004, 9, 578-582.	8.8	149
27	Defect coarsening in a biological system: The vascular cambium of cottonwood trees. Physical Review E, 2003, 67, 041914.	2.1	7
28	A Mathematical Model of Pattern Formation in the Vascular Cambium of Trees. Journal of Theoretical Biology, 2002, 216, 147-158.	1.7	35
29	A Mathematical Model of Auxin-mediated Radial Growth in Trees. Journal of Theoretical Biology, 2001, 208, 387-397.	1.7	16
30	Singularities, structures, and scaling in deformedm-dimensional elastic manifolds. Physical Review E, 2001, 65, 016603.	2.1	31
31	Avoidance model for soft particles. II. Positional ordering of charged rods. Physical Review E, 2000, 61, 6872-6878.	2.1	20
32	Limitations on the smooth confinement of an unstretchable manifold. Journal of Mathematical Physics, 2000, 41, 5107-5128.	1.1	19
33	Avoidance model for soft particles. I. Charged spheres and rods beyond the dilute limit. Journal of Chemical Physics, 1999, 110, 8825-8834.	3.0	9
34	Observation of Topological Defects in the Xylem of Populus deltoides and Implications for the Vascular Cambium. Journal of Theoretical Biology, 1999, 200, 223-230.	1.7	10
35	Distribution functions for reversibly self-assembling spherocylinders. Physical Review E, 1998, 58, 5934-5947.	2.1	12
36	Stress Condensation in Crushed Elastic Manifolds. Physical Review Letters, 1997, 78, 1303-1306.	7.8	89

ERIC M KRAMER

#	Article	IF	CITATIONS
37	The von Karman equations, the stress function, and elastic ridges in high dimensions. Journal of Mathematical Physics, 1997, 38, 830-846.	1.1	14
38	Universal power law in the noise from a crumpled elastic sheet. Physical Review E, 1996, 53, 1465-1469.	2.1	57
39	Defect coarsening and spin waves in the nonlinear I_f model. Physical Review E, 1994, 50, 3594-3600.	2.1	3