

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3076536/publications.pdf Version: 2024-02-01

FEL WEL

#	Article	IF	CITATIONS
1	Phase coexistence in fluidization. AICHE Journal, 2022, 68, .	1.8	4
2	Fast In‣itu Optical Visualization of Carbon Nanotubes Assisted by Smoke. Small Methods, 2022, 6, 2101333.	4.6	1
3	Highly Selective Conversion of CO ₂ or CO into Precursors for Kerosene-Based Aviation Fuel via an Aldol–Aromatic Mechanism. ACS Catalysis, 2022, 12, 2023-2033.	5.5	28
4	Superdurable Bifunctional Oxygen Electrocatalyst for High-Performance Zinc–Air Batteries. Journal of the American Chemical Society, 2022, 144, 2694-2704.	6.6	151
5	Ultrasensitive Airflow Sensors Based on Suspended Carbon Nanotube Networks. Advanced Materials, 2022, 34, e2107062.	11.1	17
6	Advances in Precise Structure Control and Assembly toward the Carbon Nanotube Industry (Adv.) Tj ETQq0 0 0 r	gBT /Over 7.8	lock 10 Tf 50

7	Chemical Engineering Science, 2022, 254, 117615.	1.9	1
8	Advances in Precise Structure Control and Assembly toward the Carbon Nanotube Industry. Advanced Functional Materials, 2022, 32, .	7.8	12
9	Adsorption and Desorption of Tritium on/from Nuclear Graphite. ACS Omega, 2022, 7, 752-760.	1.6	1
10	In situ imaging of the sorption-induced subcell topological flexibility of a rigid zeolite framework. Science, 2022, 376, 491-496.	6.0	62
11	Ultrasensitive Airflow Sensors Based on Suspended Carbon Nanotube Networks (Adv. Mater. 18/2022). Advanced Materials, 2022, 34, .	11.1	0
12	Modulating inherent lewis acidity at the intergrowth interface of mortise-tenon zeolite catalyst. Nature Communications, 2022, 13, .	5.8	9
13	High Hydrogen Isotope Separation Efficiency: Graphene or Catalyst?. ACS Applied Materials & Interfaces, 2022, 14, 32360-32368.	4.0	7
14	Superdurable and fire-retardant structural coloration of carbon nanotubes. Science Advances, 2022, 8, .	4.7	16
15	Atomic imaging of zeolite-confined single molecules by electron microscopy. Nature, 2022, 607, 703-707.	13.7	49
16	Intrinsic blocking effect of SiOx on the side reaction with a LiPF6-based electrolyte. Catalysis Today, 2021, 364, 61-66.	2.2	11
17	Tritium adsorption and desorption on/from nuclear graphite edge by a first-principles study. Carbon, 2021, 173, 676-686.	5.4	7
18	Monochromatic Carbon Nanotube Tangles Grown by Microfluidic Switching between Chaos and Fractals. ACS Nano, 2021, 15, 5129-5137.	7.3	5

#	Article	IF	CITATIONS
19	Bandgap oupled Template Autocatalysis toward the Growth of Highâ€Purity sp ² Nanocarbons. Advanced Science, 2021, 8, 2003078.	5.6	8
20	High-order superlattices by rolling up van der Waals heterostructures. Nature, 2021, 591, 385-390.	13.7	163
21	Resolving atomic SAPO-34/18 intergrowth architectures for methanol conversion by identifying light atoms and bonds. Nature Communications, 2021, 12, 2212.	5.8	33
22	A single-molecule van der Waals compass. Nature, 2021, 592, 541-544.	13.7	75
23	Finite-time stabilization of memristor-based inertial neural networks with time-varying delays combined with interval matrix method. Knowledge-Based Systems, 2021, 230, 107395.	4.0	22
24	The effect of localized strain on the electrical characteristics of curved carbon nanotubes. Journal of Applied Physics, 2021, 129, 025107.	1.1	4
25	Mechanical Behavior of Single and Bundled Defect-Free Carbon Nanotubes. Accounts of Materials Research, 2021, 2, 998-1009.	5.9	14
26	Transport Phenomena in Zeolites in View of Graph Theory and Pseudoâ€₱hase Transition. Small, 2020, 16, 1901979.	5.2	5
27	Model and experimental study of relationship between solid fraction and back-mixing in a fluidized bed. Powder Technology, 2020, 363, 146-151.	2.1	12
28	Synergistic regulation of osteoimmune microenvironment by IL-4 and RGD to accelerate osteogenesis. Materials Science and Engineering C, 2020, 109, 110508.	3.8	38
29	Atomic Spatial and Temporal Imaging of Local Structures and Light Elements inside Zeolite Frameworks. Advanced Materials, 2020, 32, e1906103.	11.1	81
30	TiO2 as a multifunction coating layer to enhance the electrochemical performance of SiOx@TiO2@C composite as anode material. Nano Energy, 2020, 77, 105082.	8.2	82
31	High energy and high power density supercapacitor with 3D Al foam-based thick graphene electrode: Fabrication and simulation. Energy Storage Materials, 2020, 33, 18-25.	9.5	48
32	Super-durable ultralong carbon nanotubes. Science, 2020, 369, 1104-1106.	6.0	92
33	Multi-scale analysis of the interaction in ultra-long carbon nanotubes and bundles. Journal of the Mechanics and Physics of Solids, 2020, 142, 104032.	2.3	15
34	Imaging the node-linker coordination in the bulk and local structures of metal-organic frameworks. Nature Communications, 2020, 11, 2692.	5.8	82
35	Controlled growth of crossed ultralong carbon nanotubes by gas flow. Nano Research, 2020, 13, 1988-1995.	5.8	7
36	Suppressing the Side Reaction by a Selective Blocking Layer to Enhance the Performance of Si-Based Anodes. Nano Letters, 2020, 20, 5176-5184.	4.5	39

#	Article	IF	CITATIONS
37	Stability Analysis of Gas–Solid Distribution through Nonidentical Parallel Paths. Industrial & Engineering Chemistry Research, 2020, 59, 6707-6715.	1.8	6
38	Selective Conversion of Syngas into Tetramethylbenzene via an Aldol-Aromatic Mechanism. ACS Catalysis, 2020, 10, 2477-2488.	5.5	44
39	Catalytic methane technology for carbon nanotubes and graphene. Reaction Chemistry and Engineering, 2020, 5, 991-1004.	1.9	16
40	Graphene oxide coated Titanium Surfaces with Osteoimmunomodulatory Role to Enhance Osteogenesis. Materials Science and Engineering C, 2020, 113, 110983.	3.8	41
41	Finite-time synchronization of memristor neural networks via interval matrix method. Neural Networks, 2020, 127, 7-18.	3.3	27
42	Two-way desorption coupling to enhance the conversion of syngas into aromatics by MnO/H-ZSM-5. Catalysis Science and Technology, 2020, 10, 3366-3375.	2.1	19
43	Electrochemical process of sulfur in carbon materials from electrode thickness to interlayer. Journal of Energy Chemistry, 2019, 31, 119-124.	7.1	42
44	Few-layered mesoporous graphene for high-performance toluene adsorption and regeneration. Environmental Science: Nano, 2019, 6, 3113-3122.	2.2	21
45	Silicon Carbide as a Protective Layer to Stabilize Si-Based Anodes by Inhibiting Chemical Reactions. Nano Letters, 2019, 19, 5124-5132.	4.5	91
46	Geometry-induced thermal storage enhancement of shape-stabilized phase change materials based on oriented carbon nanotubes. Applied Energy, 2019, 254, 113688.	5.1	35
47	Rate-selected growth of ultrapure semiconducting carbon nanotube arrays. Nature Communications, 2019, 10, 4467.	5.8	57
48	Single-Step Conversion of H ₂ -Deficient Syngas into High Yield of Tetramethylbenzene. ACS Catalysis, 2019, 9, 2203-2212.	5.5	79
49	Adsorption and Desorption of Tritium in Nuclear Graphite at 700°C: A Gas Chromatographic Study Using Hydrogen. Nuclear Technology, 2019, 205, 1143-1153.	0.7	6
50	Uniform coating of nano-carbon layer on SiOx in aggregated fluidized bed as high-performance anode material. Carbon, 2019, 149, 462-470.	5.4	38
51	Highly selective conversion of methanol to propylene: design of an MFI zeolite with selective blockage of (010) surfaces. Nanoscale, 2019, 11, 8096-8101.	2.8	14
52	Integrated Energy Devices: 3D Heteroatomâ€Doped Carbon Nanomaterials as Multifunctional Metalâ€Free Catalysts for Integrated Energy Devices (Adv. Mater. 13/2019). Advanced Materials, 2019, 31, 1970094.	11.1	8
53	3D Hierarchical Porous Graphene-Based Energy Materials: Synthesis, Functionalization, and Application in Energy Storage and Conversion. Electrochemical Energy Reviews, 2019, 2, 332-371.	13.1	82

54 High-Efficiency Particulate Air Filters Based on Carbon Nanotubes. , 2019, , 643-666.

6

#	Article	IF	CITATIONS
55	3D Heteroatomâ€Doped Carbon Nanomaterials as Multifunctional Metalâ€Free Catalysts for Integrated Energy Devices. Advanced Materials, 2019, 31, e1805598.	11.1	194
56	Mechanical Energy: Storage of Mechanical Energy Based on Carbon Nanotubes with High Energy Density and Power Density (Adv. Mater. 9/2019). Advanced Materials, 2019, 31, 1970064.	11.1	3
57	Evaluation of Dose Derived From HTO for Adults in the Vicinity of Qinshan Nuclear Power Base. Health Physics, 2019, 117, 443-448.	0.3	4
58	Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature, 2019, 574, 223-227.	13.7	874
59	Modulation of b-axis thickness within MFI zeolite: Correlation with variation of product diffusion and coke distribution in the methanol-to-hydrocarbons conversion. Applied Catalysis B: Environmental, 2019, 243, 721-733.	10.8	71
60	Storage of Mechanical Energy Based on Carbon Nanotubes with High Energy Density and Power Density. Advanced Materials, 2019, 31, e1800680.	11.1	46
61	Heterogeneous catalysis in multiâ€stage fluidized bed reactors: From fundamental study to industrial application. Canadian Journal of Chemical Engineering, 2019, 97, 636-644.	0.9	10
62	Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review. Carbon, 2019, 141, 467-480.	5.4	610
63	Resilient, mesoporous carbon nanotube-based strips as adsorbents of dilute organics in water. Carbon, 2018, 132, 329-334.	5.4	21
64	Compacting CNT sponge to achieve larger electromagnetic interference shielding performance. Materials and Design, 2018, 144, 323-330.	3.3	33
65	Crystal-plane effects of MFI zeolite in catalytic conversion of methanol to hydrocarbons. Journal of Catalysis, 2018, 360, 89-96.	3.1	58
66	High-precision diffusion measurement of ethane and propane over SAPO-34 zeolites for methanol-to-olefin process. Frontiers of Chemical Science and Engineering, 2018, 12, 77-82.	2.3	11
67	Singleâ€Carbonâ€Nanotube Manipulations and Devices Based on Macroscale Anthracene Flakes. Advanced Materials, 2018, 30, 1705844.	11.1	3
68	Reaction and deactivation of propylene over SAPO-34 at low temperature. Catalysis Today, 2018, 301, 244-247.	2.2	8
69	The Immunomodulatory Role of BMP-2 on Macrophages to Accelerate Osteogenesis. Tissue Engineering - Part A, 2018, 24, 584-594.	1.6	98
70	Experimental study of non-uniform bubble growth in deep fluidized beds. Chemical Engineering Science, 2018, 176, 515-523.	1.9	23
71	Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS Nano, 2018, 12, 11756-11784.	7.3	388
72	Modulation of the Osteoimmune Environment in the Development of Biomaterials for Osteogenesis. Advances in Experimental Medicine and Biology, 2018, 1077, 69-86.	0.8	11

#	Article	IF	CITATIONS
73	Approaching Theoretical Capacities in Thick Lithium Vanadium Phosphate Electrodes at High Charge/Discharge Rates. ACS Sustainable Chemistry and Engineering, 2018, 6, 15608-15617.	3.2	14
74	Direct Chirality Recognition of Singleâ€Crystalline and Singleâ€Walled Transition Metal Oxide Nanotubes on Carbon Nanotube Templates. Advanced Materials, 2018, 30, e1803368.	11.1	14
75	Carbon nanotube bundles with tensile strength over 80 GPa. Nature Nanotechnology, 2018, 13, 589-595.	15.6	283
76	Effect of nano-structural properties of biomimetic hydroxyapatite on osteoimmunomodulation. Biomaterials, 2018, 181, 318-332.	5.7	94
77	Analyzing transfer properties of zeolites using small-world networks. Nanoscale, 2018, 10, 16431-16433.	2.8	9
78	Advances in Production and Applications of Carbon Nanotubes. Topics in Current Chemistry, 2017, 375, 18.	3.0	64
79	Controlled Synthesis of Ultralong Carbon Nanotubes with Perfect Structures and Extraordinary Properties. Accounts of Chemical Research, 2017, 50, 179-189.	7.6	83
80	Establishing a discrete Ising model for zeolite deactivation: inspiration from the game of Go. Catalysis Science and Technology, 2017, 7, 2440-2444.	2.1	20
81	Tuning Chemistry and Topography of Nanoengineered Surfaces to Manipulate Immune Response for Bone Regeneration Applications. ACS Nano, 2017, 11, 4494-4506.	7.3	223
82	Novel hierarchical Ni/MgO catalyst for highly efficient CO methanation in a fluidized bed reactor. AICHE Journal, 2017, 63, 2141-2152.	1.8	20
83	Red Phosphorus Nanodots on Reduced Graphene Oxide as a Flexible and Ultra-Fast Anode for Sodium-Ion Batteries. ACS Nano, 2017, 11, 5530-5537.	7.3	201
84	A route to truly realize the chirality-specific growth of aligned carbon nanotubes. Science China Chemistry, 2017, 60, 681-682.	4.2	2
85	Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications. Chemical Society Reviews, 2017, 46, 3661-3715.	18.7	153
86	High yield production of C ₂ –C ₃ olefins and para-xylene from methanol using a SiO ₂ -coated FeO _x /ZSM-5 catalyst. RSC Advances, 2017, 7, 28940-28944.	1.7	10
87	Healing High-Loading Sulfur Electrodes with Unprecedented Long Cycling Life: Spatial Heterogeneity Control. Journal of the American Chemical Society, 2017, 139, 8458-8466.	6.6	198
88	Validation of surface coating with nanoparticles to improve the flowability of fine cohesive powders. Particuology, 2017, 30, 53-61.	2.0	31
89	Synthesis of lightweight and flexible composite aerogel of mesoporous iron oxide threaded by carbon nanotubes for microwave absorption. Journal of Alloys and Compounds, 2017, 697, 138-146.	2.8	66
90	Nanoporous microstructures mediate osteogenesis by modulating the osteo-immune response of macrophages. Nanoscale, 2017, 9, 706-718.	2.8	134

#	Article	IF	CITATIONS
91	Seed-induced and additive-free synthesis of oriented nanorod-assembled meso/macroporous zeolites: toward efficient and cost-effective catalysts for the MTA reaction. Catalysis Science and Technology, 2017, 7, 5143-5153.	2.1	26
92	Enhancement of formaldehyde removal by activated carbon fiber via in situ growth of carbon nanotubes. Building and Environment, 2017, 126, 27-33.	3.0	55
93	Carbon nanotubes / activated carbon fiber based air filter media for simultaneous removal of particulate matter and ozone. Building and Environment, 2017, 125, 60-66.	3.0	60
94	Instability of uniform fluidization. Chemical Engineering Science, 2017, 173, 187-195.	1.9	12
95	The analysis of hot spots in large scale fluidized bed reactors. RSC Advances, 2017, 7, 20186-20191.	1.7	5
96	Catalysts for single-wall carbon nanotube synthesis—From surface growth to bulk preparation. MRS Bulletin, 2017, 42, 809-818.	1.7	13
97	Design of parallel cyclones based on stability analysis. AICHE Journal, 2016, 62, 4251-4258.	1.8	14
98	Topological Defects in Metalâ€Free Nanocarbon for Oxygen Electrocatalysis. Advanced Materials, 2016, 28, 6845-6851.	11.1	629
99	Acoustic-assisted assembly of an individual monochromatic ultralong carbon nanotube for high on-current transistors. Science Advances, 2016, 2, e1601572.	4.7	32
100	Monolithic-structured ternary hydroxides as freestanding bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2016, 4, 7245-7250.	5.2	178
101	Comparison study for the oxidative dehydrogenation of isopentenes to isoprene in fixed and fluidized beds. Catalysis Today, 2016, 276, 78-84.	2.2	7
102	Highly Exfoliated Reduced Graphite Oxide Powders as Efficient Lubricant Oil Additives. Advanced Materials Interfaces, 2016, 3, 1600700.	1.9	59
103	Enhanced growth of carbon nanotube bundles in a magnetically assisted fluidized bed chemical vapor deposition. Carbon, 2016, 108, 404-411.	5.4	22
104	The influence of straight pore blockage on the selectivity of methanol to aromatics in nanosized Zn/ZSM-5: an atomic Cs-corrected STEM analysis study. RSC Advances, 2016, 6, 74797-74801.	1.7	48
105	Janus Separator of Polypropylene‣upported Cellular Graphene Framework for Sulfur Cathodes with High Utilization in Lithium–Sulfur Batteries. Advanced Science, 2016, 3, 1500268.	5.6	294
106	Molded MFI nanocrystals as a highly active catalyst in a methanol-to-aromatics process. RSC Advances, 2016, 6, 81198-81202.	1.7	21
107	Removal of Ozone by Carbon Nanotubes/Quartz Fiber Film. Environmental Science & Technology, 2016, 50, 9592-9598.	4.6	29
108	Oxygen Electrocatalysis: Topological Defects in Metal-Free Nanocarbon for Oxygen Electrocatalysis (Adv. Mater. 32/2016). Advanced Materials. 2016. 28. 7030-7030.	11.1	10

#	Article	IF	CITATIONS
109	A Review of Solid Electrolyte Interphases on Lithium Metal Anode. Advanced Science, 2016, 3, 1500213.	5.6	1,306
110	3D Carbonaceous Current Collectors: The Origin of Enhanced Cycling Stability for High‧ulfur‣oading Lithium–Sulfur Batteries. Advanced Functional Materials, 2016, 26, 6351-6358.	7.8	216
111	From nano to giant? Designing carbon nanotubes for rubber reinforcement and their applications for high performance tires. Composites Science and Technology, 2016, 137, 94-101.	3.8	58
112	CaOâ€Templated Growth of Hierarchical Porous Graphene for Highâ€Power Lithium–Sulfur Battery Applications. Advanced Functional Materials, 2016, 26, 577-585.	7.8	355
113	Moderately oxidized graphene–carbon nanotubes hybrid for high performance capacitive deionization. RSC Advances, 2016, 6, 58907-58915.	1.7	37
114	Fabrication and catalytic properties of three-dimensional ordered zeolite arrays with interconnected micro-meso-macroporous structure. Journal of Materials Chemistry A, 2016, 4, 10834-10841.	5.2	22
115	Nanoscale color sensors made on semiconducting multi-wall carbon nanotubes. Nano Research, 2016, 9, 1470-1479.	5.8	6
116	Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth. Advanced Materials, 2016, 28, 2155-2162.	11.1	591
117	Interwall Friction and Sliding Behavior of Centimeters Long Double-Walled Carbon Nanotubes. Nano Letters, 2016, 16, 1367-1374.	4.5	36
118	Bayberry-like ZnO/MFI zeolite as high performance methanol-to-aromatics catalyst. Chemical Communications, 2016, 52, 2011-2014.	2.2	77
119	Lithium Anodes: Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth (Adv. Mater. 11/2016). Advanced Materials, 2016, 28, 2090-2090.	11.1	1
120	Equilibrium analysis of methylbenzene intermediates for a methanol-to-olefins process. Catalysis Science and Technology, 2016, 6, 1297-1301.	2.1	19
121	Confined growth of Li4Ti5O12 nanoparticles in nitrogen-doped mesoporous graphene fibers for high-performance lithium-ion battery anodes. Nano Research, 2016, 9, 230-239.	5.8	48
122	Li 2 S 5 -based ternary-salt electrolyte for robust lithium metal anode. Energy Storage Materials, 2016, 3, 77-84.	9.5	236
123	Guest–host modulation of multi-metallic (oxy)hydroxides for superb water oxidation. Journal of Materials Chemistry A, 2016, 4, 3210-3216.	5.2	62
124	Powering Lithium–Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts. Nano Letters, 2016, 16, 519-527.	4.5	1,294
125	Crystal-plane effect of nanoscale CeO ₂ on the catalytic performance of Ni/CeO ₂ catalysts for methane dry reforming. Catalysis Science and Technology, 2016, 6, 3594-3605.	2.1	170
126	Preloading catalysts in the reactor for repeated growth of horizontally aligned carbon nanotube arrays. Carbon, 2016, 98, 157-161.	5.4	21

#	Article	IF	CITATIONS
127	Conversion of methanol with C5–C6 hydrocarbons into aromatics in a two-stage fluidized bed reactor. Catalysis Today, 2016, 264, 63-69.	2.2	32
128	Review on the nanoparticle fluidization science and technology. Chinese Journal of Chemical Engineering, 2016, 24, 9-22.	1.7	59
129	Energy Storage: Aerosolâ€Assisted Heteroassembly of Oxide Nanocrystals and Carbon Nanotubes into 3D Mesoporous Composites for Highâ€Rate Electrochemical Energy Storage (Small 26/2015). Small, 2015, 11, 3196-3196.	5.2	1
130	Catalysis: Spatially Confined Hybridization of Nanometer-Sized NiFe Hydroxides into Nitrogen-Doped Graphene Frameworks Leading to Superior Oxygen Evolution Reactivity (Adv. Mater. 30/2015). Advanced Materials, 2015, 27, 4524-4524.	11.1	8
131	Flexible CNT-array double helices Strain Sensor with high stretchability for Motion Capture. Scientific Reports, 2015, 5, 15554.	1.6	55
132	Spatially Confined Hybridization of Nanometerâ€Sized NiFe Hydroxides into Nitrogenâ€Doped Graphene Frameworks Leading to Superior Oxygen Evolution Reactivity. Advanced Materials, 2015, 27, 4516-4522.	11.1	612
133	The influence of added carbon nanotubes on the properties of the carbonâ€fiberâ€reinforced paperâ€based wet clutch friction materials. Lubrication Science, 2015, 27, 451-461.	0.9	6
134	Directly correlating the strain-induced electronic property change to the chirality of individual single-walled and few-walled carbon nanotubes. Nanoscale, 2015, 7, 13116-13124.	2.8	4
135	Synthesis of three-dimensional carbon nanotube/graphene hybrid materials by a two-step chemical vapor deposition process. Carbon, 2015, 86, 358-362.	5.4	50
136	Controllable oxidation for oil recovery: Low temperature oxidative decomposition of heavy oil on a MnO2 catalyst. Chinese Journal of Catalysis, 2015, 36, 153-159.	6.9	10
137	Fluidizedâ€bed CVD of unstacked doubleâ€layer templated graphene and its application in supercapacitors. AICHE Journal, 2015, 61, 747-755.	1.8	48
138	Permselective Graphene Oxide Membrane for Highly Stable and Anti-Self-Discharge Lithium–Sulfur Batteries. ACS Nano, 2015, 9, 3002-3011.	7.3	723
139	Nitrogen-doped herringbone carbon nanofibers with large lattice spacings and abundant edges: Catalytic growth and their applications in lithium ion batteries and oxygen reduction reactions. Catalysis Today, 2015, 249, 244-251.	2.2	48
140	Monolithic nitrogen-doped graphene frameworks as ultrahigh-rate anodes for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 15738-15744.	5.2	31
141	Air Injection for Enhanced Oil Recovery: <i>In Situ</i> Monitoring the Low-Temperature Oxidation of Oil through Thermogravimetry/Differential Scanning Calorimetry and Pressure Differential Scanning Calorimetry. Industrial & Engineering Chemistry Research, 2015, 54, 6634-6640.	1.8	35
142	Customized casting of unstacked graphene with high surface area (>1300 m2gâ^'1) and its application in oxygen reduction reaction. Carbon, 2015, 93, 702-712.	5.4	20
143	Aerosolâ€Assisted Heteroassembly of Oxide Nanocrystals and Carbon Nanotubes into 3D Mesoporous Composites for Highâ€Rate Electrochemical Energy Storage. Small, 2015, 11, 3135-3142.	5.2	12
144	Increasing <i>para</i> -Xylene Selectivity in Making Aromatics from Methanol with a Surface-Modified Zn/P/ZSM-5 Catalyst. ACS Catalysis, 2015, 5, 2982-2988.	5.5	263

#	Article	lF	CITATIONS
145	Highly dispersed Mn2O3 microspheres: Facile solvothermal synthesis and their application as Li-ion battery anodes. Particuology, 2015, 22, 89-94.	2.0	20
146	Poly(p-phenylene terephthalamide)/carbon nanotube composite membrane: Preparation via polyanion solution method and mechanical property enhancement. Composites Science and Technology, 2015, 118, 135-140.	3.8	15
147	Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and prospects. Energy Storage Materials, 2015, 1, 127-145.	9.5	581
148	Raman Measurement of Heat Transfer in Suspended Individual Carbon Nanotube. Journal of Nanoscience and Nanotechnology, 2015, 15, 2939-2943.	0.9	7
149	Rational recipe for bulk growth of graphene/carbon nanotube hybrids: New insights from in-situ characterization on working catalysts. Carbon, 2015, 95, 292-301.	5.4	18
150	Dual-sized NiFe layered double hydroxides in situ grown on oxygen-decorated self-dispersal nanocarbon as enhanced water oxidation catalysts. Journal of Materials Chemistry A, 2015, 3, 24540-24546.	5.2	124
151	High-power lithium ion batteries based on flexible and light-weight cathode of LiNi 0.5 Mn 1.5 O 4 /carbon nanotube film. Nano Energy, 2015, 12, 43-51.	8.2	63
152	A low content Au-based catalyst for hydrochlorination of C ₂ H ₂ and its industrial scale-up for future PVC processes. Green Chemistry, 2015, 17, 356-364.	4.6	104
153	Research on body gesture acquisition process and communication method. , 2014, , .		0
154	Hierarchical carbon-nanotube/quartz-fiber films with gradient nanostructures for high efficiency and long service life air filters. RSC Advances, 2014, 4, 54115-54121.	1.7	28
155	Full capacitance potential of SWCNT electrode in ionic liquids at 4 V. Journal of Materials Chemistry A, 2014, 2, 19897-19902.	5.2	17
156	Oneâ€pot Synthesis of Ordered Mesoporous NiCeAl Oxide Catalysts and a Study of Their Performance in Methane Dry Reforming. ChemCatChem, 2014, 6, 1470-1480.	1.8	38
157	Hierarchical Vineâ€Treeâ€Like Carbon Nanotube Architectures: Inâ€Situ CVD Selfâ€Assembly and Their Use as Robust Scaffolds for Lithiumâ€Sulfur Batteries. Advanced Materials, 2014, 26, 7051-7058.	11.1	104
158	Centrifugation-free and high yield synthesis of nanosized H-ZSM-5 and its structure-guided aromatization of methanol to 1,2,4-trimethylbenzene. Journal of Materials Chemistry A, 2014, 2, 19797-19808.	5.2	76
159	NO reduction by CO over a Fe-based catalyst in FCC regenerator conditions. Chemical Engineering Journal, 2014, 255, 126-133.	6.6	51
160	Synthesis and Properties of Ultralong Carbon Nanotubes. , 2014, , 87-136.		6
161	Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries. Energy and Environmental Science, 2014, 7, 347-353.	15.6	624
162	Hierarchical SAPO-34/18 zeolite with low acid site density for converting methanol to olefins. Catalysis Today, 2014, 233, 2-7.	2.2	74

#	Article	IF	CITATIONS
163	Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nature Communications, 2014, 5, 3410.	5.8	602
164	Emerging double helical nanostructures. Nanoscale, 2014, 6, 9339-9354.	2.8	40
165	Hierarchical NiMn Layered Double Hydroxide/Carbon Nanotubes Architecture with Superb Energy Density for Flexible Supercapacitors. Advanced Functional Materials, 2014, 24, 2938-2946.	7.8	646
166	The oxidation of heavy oil to enhance oil recovery: The numerical model and the criteria to describe the low and high temperature oxidation. Chemical Engineering Journal, 2014, 248, 422-429.	6.6	31
167	Nanoarchitectured Graphene/CNT@Porous Carbon with Extraordinary Electrical Conductivity and Interconnected Micro/Mesopores for Lithiumâ€Sulfur Batteries. Advanced Functional Materials, 2014, 24, 2772-2781.	7.8	495
168	Conversion of methanol to aromatics in fluidized bed reactor. Catalysis Today, 2014, 233, 8-13.	2.2	84
169	Nitrogenâ€Doped Graphene/Carbon Nanotube Hybrids: In Situ Formation on Bifunctional Catalysts and Their Superior Electrocatalytic Activity for Oxygen Evolution/Reduction Reaction. Small, 2014, 10, 2251-2259.	5.2	571
170	A Threeâ€Dimensionally Interconnected Carbon Nanotube–Conducting Polymer Hydrogel Network for Highâ€Performance Flexible Battery Electrodes. Advanced Energy Materials, 2014, 4, 1400207.	10.2	280
171	Carbon: Nanoarchitectured Graphene/CNT@Porous Carbon with Extraordinary Electrical Conductivity and Interconnected Micro/Mesopores for Lithium-Sulfur Batteries (Adv. Funct. Mater.) Tj ETQq1 1	0.7 8:4 314	rgBT /Overlo
172	Nitrogenâ€Doped Aligned Carbon Nanotube/Graphene Sandwiches: Facile Catalytic Growth on Bifunctional Natural Catalysts and Their Applications as Scaffolds for Highâ€Rate Lithiumâ€Sulfur Batteries. Advanced Materials, 2014, 26, 6100-6105.	11.1	534
173	Differences in the methanol-to-olefins reaction catalyzed by SAPO-34 with dimethyl ether as reactant. Journal of Catalysis, 2014, 311, 281-287.	3.1	70
174	Polysulfide shuttle control: Towards a lithium-sulfur battery with superior capacity performance up to 1000 cycles by matching the sulfur/electrolyte loading. Journal of Power Sources, 2014, 253, 263-268.	4.0	124
175	Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur batteries. Nano Energy, 2014, 4, 65-72.	8.2	366
176	The oxidation of heavy oil: Thermogravimetric analysis and non-isothermal kinetics using the distributed activation energy model. Fuel Processing Technology, 2014, 119, 146-150.	3.7	57
177	Lithium-Sulfur Batteries: Hierarchical Vine-Tree-Like Carbon Nanotube Architectures: In-Situ CVD Self-Assembly and Their Use as Robust Scaffolds for Lithium-Sulfur Batteries (Adv. Mater. 41/2014). Advanced Materials, 2014, 26, 6986-6986.	11.1	3
178	Toward Full Exposure of "Active Sites― Nanocarbon Electrocatalyst with Surface Enriched Nitrogen for Superior Oxygen Reduction and Evolution Reactivity. Advanced Functional Materials, 2014, 24, 5956-5961.	7.8	332
179	Air Filtration in the Free Molecular Flow Regime: A Review of Highâ€Efficiency Particulate Air Filters Based on Carbon Nanotubes. Small, 2014, 10, 4543-4561.	5.2	279
180	Building flexible Li4Ti5O12/CNT lithium-ion battery anodes with superior rate performance and ultralong cycling stability. Nano Energy, 2014, 10, 344-352.	8.2	104

#	Article	IF	CITATIONS
181	Vibration monitoring system of ships using wireless sensor networks. , 2014, , .		9
182	Flexible all-carbon interlinked nanoarchitectures as cathode scaffolds for high-rate lithium–sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 10869-10875.	5.2	83
183	Atmospheric pressure synthesis of nanosized ZSM-5 with enhanced catalytic performance for methanol to aromatics reaction. Catalysis Science and Technology, 2014, 4, 3840-3844.	2.1	72
184	Monodisperse embedded nanoparticles derived from an atomic metal-dispersed precursor of layered double hydroxide for architectured carbon nanotube formation. Journal of Materials Chemistry A, 2014, 2, 1686.	5.2	36
185	Lithiumâ€Sulfur Batteries: Dendriteâ€Free Nanostructured Anode: Entrapment of Lithium in a 3D Fibrous Matrix for Ultraâ€Stable Lithium–Sulfur Batteries (Small 21/2014). Small, 2014, 10, 4222-4222.	5.2	62
186	Reactivity enhancement of N-CNTs in green catalysis of C ₂ H ₂ hydrochlorination by a Cu catalyst. RSC Advances, 2014, 4, 7766-7769.	1.7	68
187	Dendriteâ€Free Nanostructured Anode: Entrapment of Lithium in a 3D Fibrous Matrix for Ultraâ€5table Lithium–Sulfur Batteries. Small, 2014, 10, 4257-4263.	5.2	154
188	Highly Electroconductive Mesoporous Graphene Nanofibers and Their Capacitance Performance at 4 V. Journal of the American Chemical Society, 2014, 136, 2256-2259.	6.6	192
189	Synergistic Gold–Bismuth Catalysis for Non-Mercury Hydrochlorination of Acetylene to Vinyl Chloride Monomer. ACS Catalysis, 2014, 4, 3112-3116.	5.5	109
190	A high efficiency particulate air filter based on agglomerated carbon nanotube fluidized bed. Carbon, 2014, 79, 424-431.	5.4	25
191	Carbon nanotube light sensors with linear dynamic range of over 120 dB. Applied Physics Letters, 2014, 105, .	1.5	29
192	Building Robust Carbon Nanotube-Interweaved-Nanocrystal Architecture for High-Performance Anode Materials. ACS Nano, 2014, 8, 9265-9273.	7.3	46
193	Batteries: Strongly Coupled Interfaces between a Heterogeneous Carbon Host and a Sulfurâ€Containing Guest for Highly Stable Lithium‣ulfur Batteries: Mechanistic Insight into Capacity Degradation (Adv.) Tj ETQq1	110978431	L4orgBT /Ove
194	Strongly Coupled Interfaces between a Heterogeneous Carbon Host and a Sulfurâ€Containing Guest for Highly Stable Lithiumâ€Sulfur Batteries: Mechanistic Insight into Capacity Degradation. Advanced Materials Interfaces, 2014, 1, 1400227.	1.9	351
195	Lithium-Sulfur Batteries: Nitrogen-Doped Aligned Carbon Nanotube/Graphene Sandwiches: Facile Catalytic Growth on Bifunctional Natural Catalysts and Their Applications as Scaffolds for High-Rate Lithium-Sulfur Batteries (Adv. Mater. 35/2014). Advanced Materials, 2014, 26, 6199-6199.	11.1	4
196	Structural deformation and infrared sensor response of ultralong carbon nanotubes. Journal of Materials Science, 2014, 49, 7023-7030.	1.7	2
197	Hierarchical Carbon Nanotube/Carbon Black Scaffolds as Short- and Long-Range Electron Pathways with Superior Li-Ion Storage Performance. ACS Sustainable Chemistry and Engineering, 2014, 2, 200-206.	3.2	58
198	Graphene/graphite sheet assisted growth of high-areal-density horizontally aligned carbon nanotubes. Chemical Communications, 2014, 50, 11158-11161.	2.2	14

#	Article	IF	CITATIONS
199	Integrated bi-modal fluidized bed reactor for butane dehydrogenation to corresponding butylenes. Chemical Engineering Journal, 2014, 238, 249-253.	6.6	4
200	Three-dimensional aluminum foam/carbon nanotube scaffolds as long- and short-range electron pathways with improved sulfur loading for high energy density lithium–sulfur batteries. Journal of Power Sources, 2014, 261, 264-270.	4.0	86
201	Controllable bulk growth of few-layer graphene/single-walled carbon nanotube hybrids containing Fe@C nanoparticles in a fluidized bed reactor. Carbon, 2014, 67, 554-563.	5.4	16
202	Carbon nanotube-penetrated mesoporous V ₂ O ₅ microspheres as high-performance cathode materials for lithium-ion batteries. RSC Advances, 2014, 4, 21018-21022.	1.7	25
203	The Catalytic Pathways of Hydrohalogenation over Metalâ€Free Nitrogenâ€Doped Carbon Nanotubes. ChemSusChem, 2014, 7, 723-728.	3.6	114
204	Resilient aligned carbon nanotube/graphene sandwiches for robust mechanical energy storage. Nano Energy, 2014, 7, 161-169.	8.2	66
205	Highly selective synthesis of single-walled carbon nanotubes from methane in a coupled Downer-turbulent fluidized-bed reactor. Journal of Energy Chemistry, 2013, 22, 567-572.	7.1	11
206	High-yield Synthesis of Nanohybrid Shish-kebab Polyethylene-carbon Nanotube Structure. Chinese Journal of Chemical Engineering, 2013, 21, 37-43.	1.7	3
207	Facile manipulation of individual carbon nanotubes assisted by inorganic nanoparticles. Nanoscale, 2013, 5, 6584.	2.8	12
208	Highly deformation-tolerant carbon nanotube sponges as supercapacitor electrodes. Nanoscale, 2013, 5, 8472.	2.8	101
209	Light-Alkane Oxidative Dehydrogenation to Light Olefins over Platinum-Based SAPO-34 Zeolite-Supported Catalyst. Industrial & Engineering Chemistry Research, 2013, 52, 346-352.	1.8	20
210	Towards high purity graphene/single-walled carbon nanotube hybrids with improved electrochemical capacitive performance. Carbon, 2013, 54, 403-411.	5.4	110
211	Ionic liquid coated single-walled carbon nanotube buckypaper as supercapacitor electrode. Particuology, 2013, 11, 409-414.	2.0	28
212	Raising the performance of a 4 V supercapacitor based on an EMIBF4–single walled carbon nanotube nanofluid electrolyte. Chemical Communications, 2013, 49, 10727.	2.2	41
213	Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nature Nanotechnology, 2013, 8, 912-916.	15.6	305
214	MgO-catalyzed growth of N-doped wrinkled carbon nanotubes. Carbon, 2013, 56, 38-44.	5.4	48
215	Synthesis of graphene from asphaltene molecules adsorbed on vermiculite layers. Carbon, 2013, 62, 213-221.	5.4	63
216	Formation mechanism of carbon encapsulated Fe nanoparticles in the growth of single-/double-walled carbon nanotubes. Chemical Engineering Journal, 2013, 223, 617-622.	6.6	11

#	Article	IF	CITATIONS
217	High density Co3O4 nanoparticles confined in a porous graphene nanomesh network driven by an electrochemical process: ultra-high capacity and rate performance for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 14023.	5.2	63
218	In situ fabrication of depth-type hierarchical CNT/quartz fiber filters for high efficiency filtration of sub-micron aerosols and high water repellency. Nanoscale, 2013, 5, 3367.	2.8	82
219	Chemical vapor deposition derived flexible graphene paper and its application as high performance anodes for lithium rechargeable batteries. Journal of Materials Chemistry A, 2013, 1, 408-414.	5.2	78
220	Direct synthesis of c-axis oriented ZSM-5 nanoneedles from acid-treated kaolin clay. Journal of Materials Chemistry A, 2013, 1, 3272.	5.2	53
221	The use of deposited nanocarbon for characterization of zeolite supported metal catalyst. Microporous and Mesoporous Materials, 2013, 169, 201-206.	2.2	3
222	The reason for the low density of horizontally aligned ultralong carbon nanotube arrays. Carbon, 2013, 52, 232-238.	5.4	27
223	High strength composites using interlocking carbon nanotubes in a polyimide matrix. Carbon, 2013, 60, 102-108.	5.4	14
224	Aligned sulfur-coated carbon nanotubes with a polyethylene glycol barrier at one end for use as a high efficiency sulfur cathode. Carbon, 2013, 58, 99-106.	5.4	143
225	Robust growth of herringbone carbon nanofibers on layered double hydroxide derived catalysts and their applications as anodes for Li-ion batteries. Carbon, 2013, 62, 393-404.	5.4	46
226	Growth of high-density parallel arrays of ultralong carbon nanotubes with catalysts pinned by silica nanospheres. Carbon, 2013, 52, 535-540.	5.4	17
227	Ferromagnetism in nanomesh graphene. Carbon, 2013, 51, 390-396.	5.4	52
228	Entrapment of sulfur in hierarchical porous graphene for lithium–sulfur batteries with high rate performance from â^'40 to 60°C. Nano Energy, 2013, 2, 314-321.	8.2	230
229	The Road for Nanomaterials Industry: A Review of Carbon Nanotube Production, Postâ€Treatment, and Bulk Applications for Composites and Energy Storage. Small, 2013, 9, 1237-1265.	5.2	617
230	Optical visualization of individual ultralong carbon nanotubes by chemical vapour deposition of titanium dioxide nanoparticles. Nature Communications, 2013, 4, 1727.	5.8	60
231	Pore-structure-mediated hierarchical SAPO-34: Facile synthesis, tunable nanostructure, and catalysis applications for the conversion of dimethyl ether into olefins. Particuology, 2013, 11, 468-474.	2.0	71
232	Porous graphene networks as high performance anode materials for lithium ion batteries. Carbon, 2013, 60, 558-561.	5.4	139
233	Multi-walled carbon nanotube-based carbon/carbon composites with three-dimensional network structures. Nanoscale, 2013, 5, 6181.	2.8	27
234	In Situ Monitoring the Role of Working Metal Catalyst Nanoparticles for Ultrahigh Purity Singleâ€Walled Carbon Nanotubes. Advanced Functional Materials, 2013, 23, 5066-5073.	7.8	27

#	Article	IF	CITATIONS
235	Continuous vinyl chloride monomer production by acetylene hydrochlorination on Hg-free bismuth catalyst: From lab-scale catalyst characterization, catalytic evaluation to a pilot-scale trial by circulating regeneration in coupled fluidized beds. Fuel Processing Technology, 2013, 108, 12-18.	3.7	81
236	Growth of Half-Meter Long Carbon Nanotubes Based on Schulz–Flory Distribution. ACS Nano, 2013, 7, 6156-6161.	7.3	308
237	Hierarchical nanostructured composite cathode with carbon nanotubes as conductive scaffold for lithium-sulfur batteries. Journal of Energy Chemistry, 2013, 22, 341-346.	7.1	40
238	Immobilizing Carbon Nanotubes on SiC Foam as a Monolith Catalyst for Oxidative Dehydrogenation Reactions. ChemCatChem, 2013, 5, 1713-1717.	1.8	25
239	An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation. Journal of the American Chemical Society, 2013, 135, 8452-8455.	6.6	2,498
240	Dehydrogenation of C3–C4 paraffin's to corresponding olefins over slit-SAPO-34 supported Pt-Sn-based novel catalyst. Journal of Industrial and Engineering Chemistry, 2013, 19, 540-546.	2.9	32
241	Carbon nanotube production and application in energy storage. Asia-Pacific Journal of Chemical Engineering, 2013, 8, 234-245.	0.8	23
242	Fabrication of <i>c-</i> Axis Oriented ZSM-5 Hollow Fibers Based on an in Situ Solid–Solid Transformation Mechanism. Journal of the American Chemical Society, 2013, 135, 15322-15325.	6.6	110
243	Thermal Transport Across the Interface Between a Suspended Single-Walled Carbon Nanotube and Air. Nanoscale and Microscale Thermophysical Engineering, 2013, 17, 349-365.	1.4	18
244	Composite Cathodes Containing SWCNT@S Coaxial Nanocables: Facile Synthesis, Surface Modification, and Enhanced Performance for Liâ€ion Storage. Particle and Particle Systems Characterization, 2013, 30, 158-165.	1.2	71
245	碳纳米管的å®é‡å^¶å¤åŠäº§ä¸šåŒ–. Scientia Sinica Chimica, 2013, 43, 641-666.	0.2	5
246	Spontaneous formation of double helical structure due to interfacial adhesion. Applied Physics Letters, 2012, 100, 263104.	1.5	27
247	Graphene/Single-Walled Carbon Nanotube Hybrids: One-Step Catalytic Growth and Applications for High-Rate Li–S Batteries. ACS Nano, 2012, 6, 10759-10769.	7.3	508
248	Building Robust Architectures of Carbon and Metal Oxide Nanocrystals toward High-Performance Anodes for Lithium-Ion Batteries. ACS Nano, 2012, 6, 9911-9919.	7.3	165
249	Carbon nanotubes for supercapacitors: Consideration of cost and chemical vapor deposition techniques. Journal of Natural Gas Chemistry, 2012, 21, 233-240.	1.8	38
250	Hierarchical carbon nanotube membrane with high packing density and tunable porous structure for high voltage supercapacitors. Carbon, 2012, 50, 5167-5175.	5.4	87
251	N-Methyl-2-pyrrolidone-assisted solvothermal synthesis of nanosize orthorhombic lithium iron phosphate with improved Li-storage performance. Journal of Materials Chemistry, 2012, 22, 18908.	6.7	19
252	Efficient production of Mg2Si in a fluidized-bed reactor. Powder Technology, 2012, 229, 152-161.	2.1	6

#	Article	IF	CITATIONS
253	Nanobelt–carbon nanotube cross-junction solar cells. Energy and Environmental Science, 2012, 5, 6119.	15.6	11
254	Oxygen Reduction Electrocatalyst Based on Strongly Coupled Cobalt Oxide Nanocrystals and Carbon Nanotubes. Journal of the American Chemical Society, 2012, 134, 15849-15857.	6.6	747
255	Integrating carbon nanotube into activated carbon matrix for improving the performance of supercapacitor. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 1138-1143.	1.7	27
256	Enhanced hydrogen production in a UASB reactor by retaining microbial consortium onto carbon nanotubes (CNTs). International Journal of Hydrogen Energy, 2012, 37, 10619-10626.	3.8	91
257	An emulsion phase condensation model to describe the defluidization behavior for reactions involving gas-volume reduction. Chemical Engineering Journal, 2012, 198-199, 364-370.	6.6	7
258	Space Confinement and Rotation Stress Induced Self-Organization of Double-Helix Nanostructure: A Nanotube Twist with a Moving Catalyst Head. ACS Nano, 2012, 6, 4520-4529.	7.3	38
259	Compressible aligned carbon nanotube/MnO2 as high-rate electrode materials for supercapacitors. Journal of Electroanalytical Chemistry, 2012, 684, 32-37.	1.9	24
260	High-performance flexible lithium-ion electrodes based on robust network architecture. Energy and Environmental Science, 2012, 5, 6845.	15.6	144
261	Dramatic enhancements in toughness of polyimide nanocomposite via long-CNT-induced long-range creep. Journal of Materials Chemistry, 2012, 22, 7050.	6.7	63
262	Self-organization of nitrogen-doped carbon nanotubes into double-helix structures. Carbon, 2012, 50, 5323-5330.	5.4	40
263	Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets. Journal of Materials Chemistry, 2012, 22, 11494.	6.7	261
264	Preferential growth of short aligned, metallic-rich single-walled carbon nanotubes from perpendicular layered double hydroxide film. Nanoscale, 2012, 4, 2470.	2.8	21
265	An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes. Nature Nanotechnology, 2012, 7, 394-400.	15.6	1,533
266	High capacity gas storage in corrugated porous graphene with a specific surface area-lossless tightly stacking manner. Chemical Communications, 2012, 48, 6815.	2.2	79
267	Advanced Asymmetric Supercapacitors Based on Ni(OH) ₂ /Graphene and Porous Graphene Electrodes with High Energy Density. Advanced Functional Materials, 2012, 22, 2632-2641.	7.8	1,855
268	Highâ€Performance Energyâ€6torage Architectures from Carbon Nanotubes and Nanocrystal Building Blocks. Advanced Materials, 2012, 24, 2030-2036.	11.1	112
269	Templateâ€Directed Synthesis of Pillaredâ€Porous Carbon Nanosheet Architectures: Highâ€Performance Electrode Materials for Supercapacitors. Advanced Energy Materials, 2012, 2, 419-424.	10.2	267
270	An ultrafast nickel–iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials. Nature Communications, 2012, 3, 917.	5.8	347

#	Article	IF	CITATIONS
271	Chemically derived graphene–metal oxide hybrids as electrodes for electrochemical energy storage: pre-graphenization or post-graphenization?. Journal of Materials Chemistry, 2012, 22, 13947.	6.7	40
272	One step synthesis of nanoparticles of cobalt in a graphitic shell anchored on graphene sheets. Carbon, 2012, 50, 2356-2358.	5.4	7
273	One-step synthesis of a graphene-carbon nanotube hybrid decorated by magnetic nanoparticles. Carbon, 2012, 50, 2764-2771.	5.4	64
274	Efficient synthesis of aligned nitrogen-doped carbon nanotubes in a fluidized-bed reactor. Catalysis Today, 2012, 186, 83-92.	2.2	33
275	Experimental and modeling analysis of NO reduction by CO for a FCC regeneration process. Chemical Engineering Journal, 2012, 184, 168-175.	6.6	33
276	The direct dispersion of granular agglomerated carbon nanotubes in bismaleimide by high pressure homogenization for the production of strong composites. Powder Technology, 2012, 217, 477-481.	2.1	23
277	Hierarchical Nanocomposites Derived from Nanocarbons and Layered Double Hydroxides ―Properties, Synthesis, and Applications. Advanced Functional Materials, 2012, 22, 675-694.	7.8	537
278	A review of the large-scale production of carbon nanotubes: The practice of nanoscale process engineering. Science Bulletin, 2012, 57, 157-166.	1.7	45
279	Direct growth of flexible LiMn2O4/CNT lithium-ion cathodes. Chemical Communications, 2011, 47, 9669.	2.2	126
280	Facile Synthesis of Graphene Nanosheets <i>via</i> Fe Reduction of Exfoliated Graphite Oxide. ACS Nano, 2011, 5, 191-198.	7.3	818
281	Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes. Chemical Communications, 2011, 47, 5976.	2.2	339
282	Improvement of oil adsorption performance by a sponge-like natural vermiculite-carbon nanotube hybrid. Applied Clay Science, 2011, 53, 1-7.	2.6	70
283	Nanographene-Constructed Carbon Nanofibers Grown on Graphene Sheets by Chemical Vapor Deposition: High-Performance Anode Materials for Lithium Ion Batteries. ACS Nano, 2011, 5, 2787-2794.	7.3	277
284	A novel scalable synthesis process of PPTA by coupling n-pentane evaporation for polymerization heat removal. Chinese Chemical Letters, 2011, 22, 1379-1382.	4.8	10
285	A multistage NOx reduction process for a FCC regenerator. Chemical Engineering Journal, 2011, 173, 296-302.	6.6	19
286	Fabrication of double- and multi-walled carbon nanotube transparent conductive films by filtration-transfer process and their property improvement by acid treatment. Applied Physics A: Materials Science and Processing, 2011, 103, 403-411.	1.1	12
287	Pt–Sn-based catalyst's intensification using Al2O3–SAPO-34 as a support for propane dehydrogenation to propylene. Journal of Industrial and Engineering Chemistry, 2011, 17, 389-393.	2.9	31
288	Synthesis of carbon nanotube/anatase titania composites by a combination of sol–gel and self-assembly at low temperature. Journal of Solid State Chemistry, 2011, 184, 1286-1292.	1.4	29

#	Article	IF	CITATIONS
289	Architectural and mechanical performances of carbon nanotube agglomerates characterized by compaction response. Powder Technology, 2011, 211, 226-231.	2.1	9
290	Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. Nano Research, 2011, 4, 870-881.	5.8	178
291	Asymmetric Supercapacitors Based on Graphene/MnO ₂ and Activated Carbon Nanofiber Electrodes with High Power and Energy Density. Advanced Functional Materials, 2011, 21, 2366-2375.	7.8	1,827
292	Superstrong Ultralong Carbon Nanotubes for Mechanical Energy Storage. Advanced Materials, 2011, 23, 3387-3391.	11.1	170
293	Enhanced Catalytic Activity of Subâ€nanometer Titania Clusters Confined inside Doubleâ€Wall Carbon Nanotubes. ChemSusChem, 2011, 4, 975-980.	3.6	57
294	Carbon Nanotube Mass Production: Principles and Processes. ChemSusChem, 2011, 4, 864-889.	3.6	329
295	Conversion of hydrogen chloride to chlorine by catalytic oxidation in a two-zone circulating fluidized bed reactor. Chemical Engineering and Processing: Process Intensification, 2011, 50, 593-598.	1.8	9
296	TEM observations of buckling and fracture modes for compressed thick multiwall carbon nanotubes. Carbon, 2011, 49, 206-213.	5.4	32
297	Very fast growth of millimeter-tall aligned carbon nanotubes between two stacked substrates coated with a metal catalyst. Carbon, 2011, 49, 1395-1400.	5.4	8
298	Synthesis of high quality single-walled carbon nanotubes on natural sepiolite and their use for phenol absorption. Carbon, 2011, 49, 1568-1580.	5.4	36
299	Stretchable single-walled carbon nanotube double helices derived from molybdenum-containing layered double hydroxides. Carbon, 2011, 49, 2148-2152.	5.4	28
300	A Two-Step Shearing Strategy To Disperse Long Carbon Nanotubes from Vertically Aligned Multiwalled Carbon Nanotube Arrays for Transparent Conductive Films. Langmuir, 2010, 26, 2798-2804.	1.6	32
301	Coupled process of plastics pyrolysis and chemical vapor deposition for controllable synthesis of vertically aligned carbon nanotube arrays. Applied Physics A: Materials Science and Processing, 2010, 100, 533-540.	1.1	45
302	Attrition behavior of fine particles in a fluidized bed with bimodal particles: Influence of particle density and size ratio. Korean Journal of Chemical Engineering, 2010, 27, 1606-1612.	1.2	11
303	Phase Transitions and Reaction Mechanism of Ilmenite Oxidation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 1338-1348.	1.1	45
304	Multi-Directional Growth of Aligned Carbon Nanotubes Over Catalyst Film Prepared by Atomic Layer Deposition. Nanoscale Research Letters, 2010, 5, 1555-1560.	3.1	20
305	In situ Synthesis of SAPO-34 Zeolites in Kaolin Microspheres for a Fluidized Methanol or Dimethyl Ether to Olefins Process. Chinese Journal of Chemical Engineering, 2010, 18, 979-987.	1.7	41
306	Advanced Materials from Natural Materials: Synthesis of Aligned Carbon Nanotubes on Wollastonites. ChemSusChem, 2010, 3, 453-459.	3.6	21

#	Article	IF	CITATIONS
307	Hierarchical Composites of Single/Doubleâ€Walled Carbon Nanotubes Interlinked Flakes from Direct Carbon Deposition on Layered Double Hydroxides. Advanced Functional Materials, 2010, 20, 677-685.	7.8	123
308	100 mm Long, Semiconducting Tripleâ€Walled Carbon Nanotubes. Advanced Materials, 2010, 22, 1867-187	'1.11.1	91
309	A Threeâ€Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors. Advanced Materials, 2010, 22, 3723-3728.	11.1	1,182
310	Carbonâ€Nanotubeâ€Array Double Helices. Angewandte Chemie - International Edition, 2010, 49, 3642-3645.	7.2	96
311	Effect of Si/Al ratio on performance of Pt–Sn-based catalyst supported on ZSM-5 zeolite for n-butane conversion to light olefins. Journal of Industrial and Engineering Chemistry, 2010, 16, 57-62.	2.9	37
312	Hydrothermal study of Pt–Sn-based SAPO-34 supported novel catalyst used for selective propane dehydrogenation to propylene. Journal of Industrial and Engineering Chemistry, 2010, 16, 774-784.	2.9	46
313	Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. Journal of Power Sources, 2010, 195, 3041-3045.	4.0	540
314	Comparison of vertically aligned carbon nanotube array intercalated production among vermiculites in fixed and fluidized bed reactors. Powder Technology, 2010, 198, 285-291.	2.1	16
315	Large scale intercalated growth of short aligned carbon nanotubes among vermiculite layers in a fluidized bed reactor. Journal of Physics and Chemistry of Solids, 2010, 71, 624-626.	1.9	10
316	Long carbon nanotubes intercrossed Cu/Zn/Al/Zr catalyst for CO/CO2 hydrogenation to methanol/dimethyl ether. Catalysis Today, 2010, 150, 55-60.	2.2	86
317	Super resilience of a compacted mixture of natural graphite and agglomerated carbon nanotubes under cyclic compression. Carbon, 2010, 48, 309-312.	5.4	6
318	Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon, 2010, 48, 487-493.	5.4	999
319	Mass production of aligned carbon nanotube arrays by fluidized bed catalytic chemical vapor deposition. Carbon, 2010, 48, 1196-1209.	5.4	86
320	The release of free standing vertically-aligned carbon nanotube arrays from a substrate using CO2 oxidation. Carbon, 2010, 48, 1441-1450.	5.4	39
321	Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. Carbon, 2010, 48, 1731-1737.	5.4	534
322	Dry spinning yarns from vertically aligned carbon nanotube arrays produced by an improved floating catalyst chemical vapor deposition method. Carbon, 2010, 48, 2855-2861.	5.4	59
323	Layered double hydroxides as catalysts for the efficient growth of high quality single-walled carbon nanotubes in a fluidized bed reactor. Carbon, 2010, 48, 3260-3270.	5.4	76
324	Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon, 2010, 48, 3825-3833.	5.4	1,272

#	Article	IF	CITATIONS
325	Oil sorption and recovery by using vertically aligned carbon nanotubes. Carbon, 2010, 48, 4197-4200.	5.4	44
326	Influence of Calcination Temperature and Reaction Atmosphere on the Catalytic Properties of Pt-Sn/SAPO-34 for Propane Dehydrogenation. Chinese Journal of Catalysis, 2010, 31, 552-556.	6.9	27
327	Carbon nanotube films change Poisson's ratios from negative to positive. Applied Physics Letters, 2010, 97, .	1.5	41
328	Patterning of hydrophobic three-dimensional carbon nanotube architectures by a pattern transfer approach. Nanoscale, 2010, 2, 1401.	2.8	20
329	Parametric Characterization and Influence of Tin on the Performance of Ptâ^'Sn/SAPO-34 Catalyst for Selective Propane Dehydrogenation to Propylene. Industrial & Engineering Chemistry Research, 2010, 49, 1274-1280.	1.8	53
330	Study of Propane Dehydrogenation to Propylene in an Integrated Fluidized Bed Reactor Using Pt-Sn/Al-SAPO-34 Novel Catalyst. Industrial & Engineering Chemistry Research, 2010, 49, 4614-4619.	1.8	24
331	Reversible high-pressure carbon nanotube vessel. Physical Review B, 2010, 81, .	1.1	7
332	Granulated Carbon Nanotubes as the Catalyst Support for Pt for the Hydrogenation of Nitrobenzene. Australian Journal of Chemistry, 2010, 63, 131.	0.5	16
333	Growing 20 cm Long DWNTs/TWNTs at a Rapid Growth Rate of 80â^'90 μm/s. Chemistry of Materials, 2010, 22, 1294-1296.	3.2	88
334	Embedded High Density Metal Nanoparticles with Extraordinary Thermal Stability Derived from Guestâ^'Host Mediated Layered Double Hydroxides. Journal of the American Chemical Society, 2010, 132, 14739-14741.	6.6	177
335	Large area growth of aligned CNT arrays on spheres: Cost performance and product control. Materials Letters, 2009, 63, 84-87.	1.3	23
336	Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy Storage. Advanced Functional Materials, 2009, 19, 3420-3426.	7.8	440
337	Energyâ€Absorbing Hybrid Composites Based on Alternate Carbonâ€Nanotube and Inorganic Layers. Advanced Materials, 2009, 21, 2876-2880.	11.1	118
338	Process intensification by CO2 for high quality carbon nanotube forest growth: Double-walled carbon nanotube convexity or single-walled carbon nanotube bowls?. Nano Research, 2009, 2, 872.	5.8	48
339	Modulating the diameter of carbon nanotubes in array form viaÂfloating catalyst chemical vapor deposition. Applied Physics A: Materials Science and Processing, 2009, 94, 853-860.	1.1	34
340	Catalytic Cracking of 1-Hexene to Propylene Using SAPO-34 Catalysts with Different Bulk Topologies. Chinese Journal of Catalysis, 2009, 30, 1049-1057.	6.9	29
341	Electrical conductivity and thermal properties of acrylonitrileâ€butadieneâ€styrene filled with multiwall carbon nanotubes. Polymer Engineering and Science, 2009, 49, 2144-2149.	1.5	26
342	Particle Measurement Sensor for in situ determination of phase structure of fluidized bed. Particuology, 2009, 7, 175-182.	2.0	12

#	Article	IF	CITATIONS
343	Fluffy carbon nanotubes produced by shearing vertically aligned carbon nanotube arrays. Carbon, 2009, 47, 538-541.	5.4	23
344	Vertically aligned carbon nanotube arrays grown on a lamellar catalyst by fluidized bed catalytic chemical vapor deposition. Carbon, 2009, 47, 2600-2610.	5.4	101
345	Gas-Phase Catalytic Hydrochlorination of Acetylene in a Two-Stage Fluidized-Bed Reactor. Industrial & Engineering Chemistry Research, 2009, 48, 128-133.	1.8	61
346	Direct synthesis of hierarchical zeolite from a natural layered material. Chemical Communications, 2009, , 3282.	2.2	93
347	Very High-Quality Single-Walled Carbon Nanotubes Grown Using a Structured and Tunable Porous Fe/MgO Catalyst. Journal of Physical Chemistry C, 2009, 113, 20178-20183.	1.5	21
348	Low Temperature Phase Transition of Ilmenite during Oxidation by Chlorine. Materials Transactions, 2009, 50, 2073-2078.	0.4	5
349	Direct Synthesis of a Fluidizable SAPO-34 Catalyst for a Fluidized Dimethyl Ether-to-Olefins Process. Catalysis Letters, 2008, 124, 297-303.	1.4	25
350	High Selectivity Production of Propylene from n-Butene: Thermodynamic and Experimental Study Using a Shape Selective Zeolite Catalyst. Catalysis Letters, 2008, 125, 380-385.	1.4	21
351	The feasibility of producing MWCNT paper and strong MWCNT film from VACNT array. Applied Physics A: Materials Science and Processing, 2008, 92, 531-539.	1.1	86
352	Synthesis of Single-Walled Carbon Nanotubes with Narrow Diameter Distribution by Calcination of a Mo-Modified Fe/MgO Catalyst. Chinese Journal of Catalysis, 2008, 29, 617-623.	6.9	16
353	Selective Synthesis of Single/Double/Multi-walled Carbon Nanotubes on MgO-Supported Fe Catalyst. Chinese Journal of Catalysis, 2008, 29, 1138-1144.	6.9	24
354	Solids mixing behavior in a nano-agglomerate fluidized bed. Powder Technology, 2008, 182, 334-341.	2.1	25
355	The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor: A multiscale space–time analysis. Powder Technology, 2008, 183, 10-20.	2.1	146
356	Downer reactor: From fundamental study to industrial application. Powder Technology, 2008, 183, 364-384.	2.1	112
357	In situ synthesis of SAPO-34 crystals grown onto α-Al2O3 sphere supports as the catalyst for the fluidized bed conversion of dimethyl ether to olefins. Applied Catalysis A: General, 2008, 341, 112-118.	2.2	35
358	Liquefied petroleum gas containing sulfur as the carbon source for carbon nanotube forests. Carbon, 2008, 46, 291-296.	5.4	42
359	Radial growth of vertically aligned carbon nanotube arrays from ethylene on ceramic spheres. Carbon, 2008, 46, 1152-1158.	5.4	93
360	The confined growth of double-walled carbon nanotubes in porous catalysts by chemical vapor deposition. Carbon, 2008, 46, 1860-1868.	5.4	32

#	Article	IF	CITATIONS
361	Kinetics of the reactions of the light alkenes over SAPO-34. Applied Catalysis A: General, 2008, 348, 135-141.	2.2	79
362	In situ growth of carbon nanotubes on inorganic fibers with different surface properties. Materials Chemistry and Physics, 2008, 107, 317-321.	2.0	30
363	The effect of carbon nanotubes microstructures on reinforcing properties of SWNTs/alumina composite. Materials Research Bulletin, 2008, 43, 2806-2809.	2.7	31
364	A new structure for multi-walled carbon nanotubes reinforced alumina nanocomposite with high strength and toughness. Materials Letters, 2008, 62, 641-644.	1.3	112
365	Carbon nanofiber microspheres obtained from ethylene using FeCl3 as the catalyst precursor. Materials Letters, 2008, 62, 3149-3151.	1.3	9
366	Growth Deceleration of Vertically Aligned Carbon Nanotube Arrays:  Catalyst Deactivation or Feedstock Diffusion Controlled?. Journal of Physical Chemistry C, 2008, 112, 4892-4896.	1.5	102
367	Hierarchical Agglomerates of Carbon Nanotubes as High-Pressure Cushions. Nano Letters, 2008, 8, 1323-1327.	4.5	50
368	Synthesis of thin-walled carbon nanotubes from methane by changing the Ni/Mo ratio in a Ni/Mo/MgO catalyst. New Carbon Materials, 2008, 23, 319-325.	2.9	20
369	Study on the FCC Process of a Novel Riserâ^'Downer Coupling Reactor (III): Industrial Trial and CFD Modeling. Industrial & Engineering Chemistry Research, 2008, 47, 8582-8587.	1.8	15
370	Enhanced Activation and Decomposition of CH ₄ by the Addition of C ₂ H ₄ or C ₂ H ₂ for Hydrogen and Carbon Nanotube Production. Journal of Physical Chemistry C, 2008, 112, 7588-7593.	1.5	33
371	Large scale synthesis of vertical aligned CNT array on irregular quartz particles. Materials Research Society Symposia Proceedings, 2008, 1081, 1.	0.1	0
372	SYNTHESIS OF SINGLE-WALLED CARBON NANOTUBES FROM LIQUEFIED PETROLEUM GAS. Nano, 2008, 03, 95-100.	0.5	11
373	Synthesis of Vertically Aligned CNTs with Hollow Channel on Al[sub 2]O[sub 3]–Al Substrate Electroplated with Fe Nanoparticles. Journal of the Electrochemical Society, 2008, 155, K180.	1.3	10
374	Skin-Core Micro-Structure and Surface Orientation of Carbon Nanotube Composites by Injection Molding Process. Solid State Phenomena, 2008, 136, 51-56.	0.3	7
375	FEW WALLED CARBON NANOTUBE PRODUCTION IN LARGE-SCALE BY NANO-AGGLOMERATE FLUIDIZED-BED PROCESS. Nano, 2008, 03, 45-50.	0.5	18
376	Substrate morphology induced self-organization into carbon nanotube arrays, ropes, and agglomerates. Nanotechnology, 2008, 19, 435602.	1.3	13
377	A density functional study of nitrogen adsorption in single-wall carbon nanotubes. Nanotechnology, 2007, 18, 095707.	1.3	10
378	Temperature effect on the substrate selectivity of carbon nanotube growth in floating chemical vapor deposition. Nanotechnology, 2007, 18, 415703.	1.3	29

#	Article	IF	CITATIONS
379	Oxygen-assisted synthesis of SWNTs from methane decomposition. Nanotechnology, 2007, 18, 215610.	1.3	16
380	Purifying double-walled carbon nanotubes by vacuum high-temperature treatment. Nanotechnology, 2007, 18, 175704.	1.3	7
381	Porous and Lamella-like Fe/MgO Catalysts Prepared under Hydrothermal Conditions for High-Yield Synthesis of Double-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 1969-1975.	1.5	47
382	CO2-Assisted SWNT Growth on Porous Catalysts. Chemistry of Materials, 2007, 19, 1226-1230.	3.2	71
383	Synchronous Growth of Vertically Aligned Carbon Nanotubes with Pristine Stress in the Heterogeneous Catalysis Process. Journal of Physical Chemistry C, 2007, 111, 14638-14643.	1.5	86
384	The effect of phase separation in Fe/Mg/Al/O catalysts on the synthesis of DWCNTs from methane. Carbon, 2007, 45, 1645-1650.	5.4	33
385	Preparation of a carbon nanotube film by ink-jet printing. Carbon, 2007, 45, 2712-2716.	5.4	43
386	Ammoxidation of propylene to acrylonitrile in a bench-scale circulating fluidized bed reactor. Chemical Engineering and Processing: Process Intensification, 2007, 46, 918-923.	1.8	10
387	Large scale production of carbon nanotube arrays on the sphere surface from liquefied petroleum gas at low cost. Science Bulletin, 2007, 52, 2896-2902.	1.7	27
388	A novel X-ray computed tomography method for fast measurement of multiphase flow. Chemical Engineering Science, 2007, 62, 4325-4335.	1.9	44
389	Advances in multiphase reactors for the fuel industry. Studies in Surface Science and Catalysis, 2006, 159, 85-90.	1.5	1
390	Improvement of Fe/MgO Catalysts by Calcination for the Growth of Single- and Double-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2006, 110, 1201-1205.	1.2	54
391	Rings of triple-walled carbon nanotube bundles. Applied Physics Letters, 2006, 89, 223106.	1.5	22
392	Growth of branch carbon nanotubes on carbon nanotubes as support. Diamond and Related Materials, 2006, 15, 1447-1451.	1.8	23
393	CFD Simulation of fluid catalytic cracking in downer reactors. Particuology: Science and Technology of Particles, 2006, 4, 160-166.	0.4	11
394	Effect of the reaction atmosphere on the diameter of single-walled carbon nanotubes produced by chemical vapor deposition. Carbon, 2006, 44, 1706-1712.	5.4	35
395	Microstructure of carbon nanotubes/PET conductive composites fibers and their properties. Composites Science and Technology, 2006, 66, 1022-1029.	3.8	148
396	Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 132, 85-89.	1.7	306

#	Article	IF	CITATIONS
397	Solids mixing in a down-flow circulating fluidized bed of 0.418-m in diameter. Powder Technology, 2006, 161, 48-52.	2.1	18
398	Synthesis of dispersed ZrO2 nano-laminae composed of ZrO2 nanocrystals. Materials Letters, 2006, 60, 3104-3108.	1.3	7
399	Hydrodynamics and gas mixing in a carbon nanotube agglomerate fluidized bed. AICHE Journal, 2006, 52, 4110-4123.	1.8	37
400	Toughening and reinforcing alumina matrix composite with single-wall carbon nanotubes. Applied Physics Letters, 2006, 89, 121910.	1.5	82
401	Elastic deformation of multiwalled carbon nanotubes in electrospun MWCNTs–PEO and MWCNTs–PVA nanofibers. Polymer, 2005, 46, 12689-12695.	1.8	81
402	Online BET analysis of single-wall carbon nanotube growth and its effect on catalyst reactivation. Carbon, 2005, 43, 1439-1444.	5.4	22
403	Fabrication of ordered single-walled carbon nanotube preforms. Carbon, 2005, 43, 2232-2234.	5.4	4
404	Gaseous catalytic hydrogenation of nitrobenzene to aniline in a two-stage fluidized bed reactor. Applied Catalysis A: General, 2005, 286, 30-35.	2.2	86
405	Fabrication and characterization of multi-walled carbon nanotubes-based ink. Journal of Materials Science, 2005, 40, 5075-5077.	1.7	53
406	Fluidization of carbon nanotubes. Particuology: Science and Technology of Particles, 2005, 3, 40-41.	0.4	6
407	Study on the FCC Process in a Novel Riserâ^'Downerâ^'Coupling Reactor (I):Â Hydrodynamics and Mixing Behaviors. Industrial & Engineering Chemistry Research, 2005, 44, 733-741.	1.8	6
408	Study on the FCC Process in a Novel Riserâ^'Downerâ^'Coupling Reactor (II):Â Simulation and Hot Experiments. Industrial & Engineering Chemistry Research, 2005, 44, 1446-1453.	1.8	13
409	Radial Profiles of Particle Velocity in a Large Scale CFB Downer. International Journal of Chemical Reactor Engineering, 2004, 2, .	0.6	0
410	Characterization of single-wall carbon nanotubes by N2 adsorption. Carbon, 2004, 42, 2375-2383.	5.4	107
411	A novel low-temperature method to grow single-crystal ZnO nanorods. Journal of Crystal Growth, 2004, 271, 353-357.	0.7	43
412	The ecological perspective in chemical engineering. Chemical Engineering Science, 2004, 59, 1885-1895.	1.9	13
413	Enhanced production of carbon nanotubes: combination of catalyst reduction and methane decomposition. Applied Catalysis A: General, 2004, 258, 121-124.	2.2	99
414	New procedure towards size-homogeneous and well-dispersed nickel oxide nanoparticles of 30 nm. Materials Letters, 2004, 58, 3226-3228.	1.3	77

#	Article	IF	CITATIONS
415	XPS characterization of carbon nanotube supported CoMo hydrodesulfurization catalysts. Chinese Journal of Chemistry, 2004, 22, 1250-1256.	2.6	23
416	The solid flow structure in a circulating fluidized bed riser/downer of 0.42-m diameter. Powder Technology, 2003, 129, 46-52.	2.1	54
417	Mixing behavior of wide-size-distribution particles in a FCC riser. Powder Technology, 2003, 132, 25-29.	2.1	7
418	Carbon nanotubes containing iron and molybdenum particles as a catalyst for methane decomposition. Carbon, 2003, 41, 846-848.	5.4	32
419	Quantitative Raman characterization of the mixed samples of the single and multi-wall carbon nanotubes. Carbon, 2003, 41, 1851-1854.	5.4	92
420	Effect of adding nickel to iron–alumina catalysts on the morphology of as-grown carbon nanotubes. Carbon, 2003, 41, 2487-2493.	5.4	46
421	99.9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing. Carbon, 2003, 41, 2585-2590.	5.4	254
422	The evaluation of the gross defects of carbon nanotubes in a continuous CVD process. Carbon, 2003, 41, 2613-2617.	5.4	66
423	Carbon nanotubes with large cores produced by adding sodium carbonate to the catalyst. Carbon, 2003, 41, 2683-2686.	5.4	9
424	A treatment method to give separated multi-walled carbon nanotubes with high purity, high crystallization and a large aspect ratio. Carbon, 2003, 41, 2939-2948.	5.4	216
425	The near wall dense ring in a large-scale down-flow circulating fluidized bed. Chemical Engineering Journal, 2003, 92, 161-167.	6.6	23
426	Interaction-mediated growth of carbon nanotubes on acicular silica-coated α-Fe catalyst by chemical vapor deposition. Particuology: Science and Technology of Particles, 2003, 1, 253-257.	0.4	1
427	Nanoscale process engineering. Particuology: Science and Technology of Particles, 2003, 1, 212-218.	0.4	5
428	Particle Size Distribution and Morphology of in Situ Suspension Polymerized Toner. Industrial & Engineering Chemistry Research, 2003, 42, 5568-5575.	1.8	28
429	What causes the carbon nanotubes collapse in a chemical vapor deposition process. Journal of Chemical Physics, 2003, 118, 878-882.	1.2	27
430	Production of high quality single-walled carbon nanotubes in a nano-agglomerated fluidized bed reactor. Materials Research Society Symposia Proceedings, 2003, 785, 941.	0.1	0
431	Single walled 0.4 nm carbon nanotube bundles prepared by pyrolysis of n-hexane catalyzed by ferrocene. Materials Research Society Symposia Proceedings, 2003, 772, 361.	0.1	0
432	Synthesis of carbon-encapsulated magnetic nanoparticles by a grain-boundary-reaction. Materials Research Society Symposia Proceedings, 2003, 776, 5141.	0.1	1

#	Article	IF	CITATIONS
433	Experimental Study of the Deep Catalytic Cracking Process in a Downer Reactor. Industrial & Engineering Chemistry Research, 2002, 41, 6015-6019.	1.8	29
434	Gas and solids mixing in a turbulent fluidized bed. AICHE Journal, 2002, 48, 1896-1909.	1.8	122
435	Catalysts effect on morphology of carbon nanotubes prepared by catalytic chemical vapor deposition in a nano-agglomerate bed. Physica B: Condensed Matter, 2002, 323, 314-317.	1.3	37
436	Agglomerated carbon nanotubes and its mass production in a fluidized-bed reactor. Physica B: Condensed Matter, 2002, 323, 327-329.	1.3	43
437	Radial behavior in riser and downer during the FCC process. Chemical Engineering and Processing: Process Intensification, 2002, 41, 259-266.	1.8	36
438	Lateral solids mixing behavior of different particles in a riser with FCC particles as fluidized material. Chemical Engineering and Processing: Process Intensification, 2002, 41, 329-335.	1.8	21
439	Synthesis of carbon nanotubes from liquefied petroleum gas containing sulfur. Carbon, 2002, 40, 2968-2970.	5.4	84
440	The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor. Chemical Physics Letters, 2002, 364, 568-572.	1.2	275
441	CFD simulation of hydrodynamics in the entrance region of a downer. Chemical Engineering Science, 2001, 56, 1687-1696.	1.9	46
442	A pilot plant study and 2-D dispersion-reactor model for a high-density riser reactor. Chemical Engineering Science, 2001, 56, 613-620.	1.9	15
443	Transient density signal analysis and two-phase micro-structure flow in gas–solids fluidization. Chemical Engineering Science, 2001, 56, 2179-2189.	1.9	72
444	Numerical simulation of the gas–particle turbulent flow in riser reactor based on k–ε–kp–εp–Î~ two-fluid model. Chemical Engineering Science, 2001, 56, 6813-6822.	1.9	103
445	Lateral solids dispersion in a high-density riser with swirling air flow. Powder Technology, 2001, 121, 123-130.	2.1	20
446	Modeling the hydrodynamics of downer reactors based on kinetic theory. Chemical Engineering Science, 1999, 54, 2019-2027.	1.9	86
447	Inlet and outlet effects on flow patterns in gas-solid risers. Powder Technology, 1998, 98, 151-156.	2.1	58
448	Profiles of particle velocity and solids fraction in a high-density riser. Powder Technology, 1998, 100, 183-189.	2.1	103
449	Axial and lateral dispersion of fine particles in a binaryâ€solid riser. Canadian Journal of Chemical Engineering, 1998, 76, 19-26.	0.9	42
450	Unique properties of 30-μm particles as the catalyst of fluidized-bed reactors. AICHE Journal, 1997, 43, 1190-1193.	1.8	5

#	Article	IF	CITATIONS
451	Radial solids fraction profiles in inlet region of high density circulating fluidized bed. Chemical Engineering and Technology, 1997, 20, 304-308.	0.9	4
452	Effect of flow direction on axial solid dispersion in gas—solids cocurrent upflow and downflow systems. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1996, 64, 345-352.	0.1	20
453	Lateral and Axial Mixing of the Dispersed Particles in CFB Journal of Chemical Engineering of Japan, 1995, 28, 506-510.	0.3	46
454	Gas mixing in the cocurrent downflow circulating fluidised bed. Chemical Engineering and Technology, 1995, 18, 59-62.	0.9	25
455	The characteristics of cluster in a high density circulating fluidized bed. Canadian Journal of Chemical Engineering, 1995, 73, 650-655.	0.9	40
456	Dispersion of lateral and axial solids in a cocurrent downflow circulating fluidized bed. Powder Technology, 1994, 81, 25-30.	2.1	72
457	Gas and solids mixing in a commercial FCC regenerator. Chemical Engineering and Technology, 1993, 16, 109-113.	0.9	16
458	Integrated Approach for Heat Transfer in Fluidized Bed Reactors. , 0, , .		0
459	An IMU Static Attitude Angle Calibration Method Based on Total Station. Advanced Materials Research, 0, 977, 496-501.	0.3	1