László Jicsinszky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3076198/publications.pdf

Version: 2024-02-01

76 papers

1,549 citations

257450 24 h-index 377865 34 g-index

84 all docs

84 docs citations

84 times ranked 1774 citing authors

#	Article	IF	CITATIONS
1	A "green―strategy to construct non-covalent, stable and bioactive coatings on porous MOF nanoparticles. Scientific Reports, 2015, 5, 7925.	3.3	139
2	Catalytic transfer hydrogenation of sugar derivatives. Carbohydrate Polymers, 2001, 45, 139-145.	10.2	53
3	In Vitro Enhanced Skin Permeation and Retention of Imiquimod Loaded in \hat{l}^2 -Cyclodextrin Nanosponge Hydrogel. Pharmaceutics, 2019, 11, 138.	4.5	51
4	Influence of (hydroxy)alkylamino substituents on enantioseparation ability of single-isomer amino-Î ² -cyclodextrin derivatives in chiral capillary electrophoresis. Electrophoresis, 2004, 25, 2675-2686.	2.4	45
5	Enantiomeric separation of antimalarial drugs by capillary electrophoresis using neutral and negatively charged cyclodextrins. Journal of Pharmaceutical and Biomedical Analysis, 2011, 54, 475-481.	2.8	41
6	Targeted Delivery Methods for Anticancer Drugs. Cancers, 2022, 14, 622.	3.7	41
7	Synthesis and Study of New β-Cyclodextrin â€~Dimers' Having a Metal Coordination Center and carboxamide or urea linkers. Helvetica Chimica Acta, 1998, 81, 632-645.	1.6	40
8	Uptake of a fluorescent methyl- \hat{l}^2 -cyclodextrin via clathrin-dependent endocytosis. Chemistry and Physics of Lipids, 2012, 165, 505-511.	3.2	40
9	Improving the Trapping of Superoxide Radical with a βâ€Cyclodextrin– 5â€Diethoxyphosphorylâ€5â€methylâ€1â€pyrrolineâ€ <i>N</i> àê€oxide (DEPMPO) Conjugate. Chemistry - A Euro Journal, 2009, 15, 11114-11118.	p ean	37
10	Thermal characterization of natural and modified cyclodextrins using TG-MS combined technique. Journal of Thermal Analysis and Calorimetry, 2005, 80, 419-424.	3.6	36
11	Modified Linear Dextrins ("Acyclodextrinsâ€) as New Chiral Selectors for the Gas-Chromatographic Separation of Enantiomers. Angewandte Chemie - International Edition, 2005, 44, 4092-4095.	13.8	35
12	Nitroxide Bound Î ² -Cyclodextrin:Â Is There an Inclusion Complex?. Journal of Organic Chemistry, 2006, 71, 7657-7667.	3.2	34
13	Copper(II)-Complex Directed Regioselective Mono- <i>p</i> -Toluenesulfonylation of Cyclomaltoheptaose at a Primary Hydroxyl Group Position: An NMR and Molecular Dynamics-Aided Design. Journal of Physical Chemistry B, 2011, 115, 7524-7532.	2.6	34
14	\hat{l} ±-Phenyl-N-tert-butylnitrone-Type Derivatives Bound to \hat{l} 2-Cyclodextrins: Syntheses, Thermokinetics of Self-Inclusion and Application to Superoxide Spin-Trapping. Chemistry - A European Journal, 2007, 13, 9344-9354.	3.3	32
15	Phosphated cyclodextrins as new acidic chiral additives for capillary electrophoresis. Journal of Separation Science, 1997, 9, 581-589.	1.0	30
16	Cyclodextrin solubilization and complexation of antiretroviral drug lopinavir: In silico prediction; Effects of derivatization, molar ratio and preparation method. Carbohydrate Polymers, 2020, 227, 115287.	10.2	29
17	Recent Applications of Cyclodextrins as Food Additives and in Food Processing. Current Nutrition and Food Science, 2013, 9, 167-179.	0.6	29
18	Gas-chromatographic approach to probe the absence of molecular inclusion in enantioseparations by carbohydrates. Investigation of linear dextrins ($\hat{a} \in \alpha$) as novel chiral stationary phases. Chirality, 2007, 19, 391-400.	2.6	28

#	Article	IF	CITATIONS
19	Symmetry Requirements for Effective Blocking of Pore-Forming Toxins: Comparative Study with \hat{l}_{\pm} -, \hat{l}_{\pm} -, and \hat{l}_{\pm} -Cyclodextrin Derivatives. Antimicrobial Agents and Chemotherapy, 2011, 55, 3594-3597.	3.2	28
20	Efficient regioselective functionalizations of cyclodextrins carried out under microwaves or power ultrasound. Tetrahedron Letters, 2007, 48, 9185-9189.	1.4	26
21	Chiral separation by a monofunctionalized cyclodextrin derivative: From selector to permethyl- \hat{l}^2 -cyclodextrin bonded stationary phase. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51, 84-89.	2.8	26
22	Cyclodextrins in the antiviral therapy. Journal of Drug Delivery Science and Technology, 2021, 64, 102589.	3.0	26
23	Capillary Electrophoresis, ROESY NMR and Molecular Modelling Study of the Inclusion Complex β-Cyclodextrin/Lipoic Acid. European Journal of Organic Chemistry, 2002, 2002, 1191-1196.	2.4	25
24	Application of combined thermoanalytical techniques in the investigation of cyclodextrin inclusion complexes. Journal of Thermal Analysis and Calorimetry, 2006, 84, 693-701.	3.6	24
25	Nucleophilic Substitutions of 6I-O-Monotosyl- \hat{l}^2 -cyclodextrin in a Planetary Ball Mill. ACS Sustainable Chemistry and Engineering, 2016, 4, 919-929.	6.7	24
26	Solvent-dependent radiationless transitions in fluorenone: A probe for hydrogen bonding interactions in the cyclodextrin cavity. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1994, 18, 237-245.	1.6	23
27	One step synthesis of new urea-linked \hat{l}^2 -cyclodextrin dimers. Tetrahedron Letters, 1996, 37, 4011-4014.	1.4	23
28	Synthesis of symmetrically modified \hat{l}_{\pm} -cyclodextrins: an efficient and easy method. Tetrahedron Letters, 2003, 44, 5411-5413.	1.4	23
29	Separation of cis- \hat{l}^2 -lactam enantiomers by capillary electrophoresis using cyclodextrin derivatives. Journal of Pharmaceutical and Biomedical Analysis, 2010, 53, 382-388.	2.8	23
30	Complexation of maltodextrin-based inulin and green tea polyphenols via different ultrasonic pretreatment. Ultrasonics Sonochemistry, 2021, 74, 105568.	8.2	23
31	Chiral separation of pyrethroic acids with single isomer permethyl monoamino \hat{l}^2 -cyclodextrin selector. Electrophoresis, 2001, 22, 3232-3236.	2.4	22
32	Synthetic strategies for the fluorescent labeling of epichlorohydrin-branched cyclodextrin polymers. Beilstein Journal of Organic Chemistry, 2014, 10, 3007-3018.	2.2	22
33	Enabling technologies and green processes in cyclodextrin chemistry. Beilstein Journal of Organic Chemistry, 2016, 12, 278-294.	2.2	22
34	Enantiomer separation of disopyramide with capillary electrophoresis using various cyclodextrins. Electrophoresis, 1997, 18, 1002-1006.	2.4	20
35	Semiempirical calculations on cyclodextrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1994, 18, 275-289.	1.6	19
36	A Host–Guest Supramolecular Complex with Photoregulated Delivery of Nitric Oxide and Fluorescence Imaging Capacity in Cancer Cells. Chemistry - an Asian Journal, 2012, 7, 2888-2894.	3.3	19

#	Article	IF	Citations
37	Efficient mechanochemical synthesis of regioselective persubstituted cyclodextrins. Beilstein Journal of Organic Chemistry, 2016, 12, 2364-2371.	2.2	19
38	External vs. Internal Interactions in the Enantiodiscrimination of Fluorinated αâ€Amino Acid Derivatives by Heptakis[2,3â€diâ€∢i>Oàê€acetylâ€6â€∢i>Oàê€(<i>tert</i> àê€butyldimethylsilyl)]â€Î²â€€yclodextrin, a FChiral Solvating Agent for NMR Spectroscopy. European Journal of Organic Chemistry, 2008, 2008, 1855-1863.	Powerful 2.4	18
39	A new class of cationic cyclodextrins: synthesis and chemico-physical properties. New Journal of Chemistry, 2010, 34, 2013.	2.8	18
40	Permethyl monoamino \hat{l}^2 -cyclodextrin a new chiral selective agent for capillary electrophoresis. Chromatographia, 2000, 53, 166-172.	1.3	17
41	Synthesis, characterization and chemisorption on gold of a β-cyclodextrin–lipoic acid conjugate. Tetrahedron Letters, 2001, 42, 5241-5244.	1.4	15
42	Femtosecond to Second Studies of a Water-Soluble Porphyrin Derivative in Chemical and Biological Nanocavities. Langmuir, 2012, 28, 4363-4372.	3.5	15
43	Synthesis of 6I-amino-6I-deoxy-2I–VII,3I–VII-tetradeca-O-methyl-cyclomaltoheptaose. Carbohydrate Research, 2004, 339, 1361-1366.	2.3	14
44	Structure and stability of warfarin-sodium inclusion complexes formed with permethylated monoamino-l̂2-cyclodextrin. Journal of Pharmaceutical and Biomedical Analysis, 2013, 72, 292-298.	2.8	13
45	Adsorptive Recovery of Iopamidol from Aqueous Solution and Parallel Reuse of Activated Carbon: Batch and Flow Study. Industrial & Engineering Chemistry Research, 2019, 58, 7284-7295.	3.7	13
46	Chiral analysis of metoprolol and its by-products by capillary electrophoresis. Journal of Separation Science, 1999, 11, 716-722.	1.0	12
47	Synthesis of Randomly Substituted Anionic Cyclodextrins in Ball Milling. Molecules, 2017, 22, 485.	3.8	12
48	Electron Paramagnetic Resonance Spin Trapping of Glutathiyl Radicals by PBN in the Presence of Cyclodextrins and by PBN Attached to \hat{l}^2 -Cyclodextrin. Journal of Physical Chemistry B, 2008, 112, 13157-13162.	2.6	11
49	Complexes of peracetylated cyclodextrin in a non-aqueous aprotic medium: the role of residual water. Physical Chemistry Chemical Physics, 2015, 17, 17380-17390.	2.8	11
50	Influence of the milling parameters on the nucleophilic substitution reaction of activated \hat{l}^2 -cyclodextrins. Beilstein Journal of Organic Chemistry, 2017, 13, 1893-1899.	2.2	11
51	Generation of model reactions leading to limit cycle behavior. Reaction Kinetics and Catalysis Letters, 1982, 18, 65-71.	0.6	10
52	A Maltooctaose Derivative ("Acyclodextrinâ€) as a Chiral Stationary Phase for Enantioselective Gas Chromatography. European Journal of Organic Chemistry, 2008, 2008, 4241-4244.	2.4	10
53	Structural Equilibrium in New Nitroxide-Capped Cyclodextrins: CW and Pulse EPR Study. Journal of Physical Chemistry B, 2013, 117, 8223-8231.	2.6	10
54	Cationic permethylated 6-monoamino-6-monodeoxy-β-cyclodextrin as chiral selector of dansylated amino acids in capillary electrophoresis. Journal of Pharmaceutical and Biomedical Analysis, 2014, 99, 16-21.	2.8	10

#	Article	IF	CITATIONS
55	Reaction of oxiranes with cyclodextrins under high-energy ball-milling conditions. Beilstein Journal of Organic Chemistry, 2019, 15, 1448-1459.	2.2	10
56	Catalytic transfer hydrogenation of cyclodextrin azides and benzylated glucose derivatives. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1994, 18, 247-254.	1.6	9
57	EPR, NMR, and Thermodynamic Evidences for Forced Nuclear Spin–Electron Spin Interactions in the Case of 1-Phenyl-2-Methylpropyl-1,1-Dimethyl-2-Nitroxide (TIPNO) Attached to Permethylated β-Cyclodextrin. Applied Magnetic Resonance, 2009, 36, 181-194.	1.2	9
58	Synthesis and properties of a series of \hat{l}^2 -cyclodextrin/nitrone spin traps for improved superoxide detection. Organic and Biomolecular Chemistry, 2017, 15, 6358-6366.	2.8	8
59	Fluorescent cyclodextrin carriers for a water soluble Zn ^{II} pyrazinoporphyrazine octacation with photosensitizer potential. RSC Advances, 2014, 4, 26359-26367.	3.6	7
60	New type of bridged monoamino-?-Cyclodextrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1996, 25, 53-56.	1.6	6
61	Cyclodextrin-containing sensors to provide an early warning of contamination. Land Contamination and Reclamation, 2009, 17, 405-412.	0.4	6
62	Cyclodextrins in Skin Formulations and Transdermal Delivery. Journal of Skin and Stem Cell, 2020, 6, .	0.2	6
63	Chiral selective separation of tocainide by capillary electrophoresis using various cyclodextrin derivatives. Journal of Separation Science, 2001, 13, 62-68.	1.0	5
64	Synthesis and selfâ€assembly behavior study of α,ï‰â€dicarboxylâ€poly(ethylene) Tj ETQq0 0 0 rgBT /Overloc Polymer Science Part A, 2007, 45, 5149-5155.	k 10 Tf 50 2.3	387 Td (glycc 5
65	Comparative Studies of Mechanochemically Synthesized Insoluble Beta-Cyclodextrin Polymers. Current Organic Chemistry, 2021, 25, 1923-1936.	1.6	5
66	Toward a Greener Worldâ€"Cyclodextrin Derivatization by Mechanochemistry. Molecules, 2021, 26, 5193.	3.8	5
67	Investigation of the Drug Carrier Properties of Insoluble Cyclodextrin Polymer Microspheres. Biomolecules, 2022, 12, 931.	4.0	5
68	Water soluble heptakis (6-deoxy-6-thio) cyclomal to heptaose capped gold nanoparticles via metal vapour synthesis: NMR structural characterization and complexation properties. Carbohydrate Research, 2011, 346, 753-758.	2.3	4
69	Inhibition of Clostridium perfringens epsilon toxin by \hat{l}^2 -cyclodextrin derivatives. International Journal of Pharmaceutics, 2017, 531, 714-717.	5. 2	4
70	Several Exact Results on Deterministic Exotic Kinetics. Zeitschrift Fur Physikalische Chemie, 1983, 2640, 449-463.	2.8	2
71	Synthesis of modified cyclic and acyclic dextrins and comparison of their complexation ability. Beilstein Journal of Organic Chemistry, 2014, 10, 2836-2843.	2.2	2
72	Hydrogen Bonding Interactions With Cyclodextrins: Utilization of Fluorenone as a New Probe. , 1996 , , $255-258$.		2

#	Article	IF	CITATIONS
73	Highly efficient Synthesis of per-substituted amino-cyclodextrins under Microwave Irradiation in a closed Cavity. Materials Research Society Symposia Proceedings, 2013, 1492, 177-182.	0.1	1
74	Microwave-Assisted, One-Pot Synthesis of Doxycycline under Heterogeneous Catalysis in Water. Antibiotics, 2021, 10, 1084.	3.7	1
75	Perspectives of Chiral Capillary Electrophoresis Using Phosphated Cyclodextrins as Additives. , 1996, , 649-652.		0
76	Chiral analysis of metoprolol and its byâ€products by capillary electrophoresis. Journal of Separation Science, 1999, 11, 716-722.	1.0	0