Yang Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3075625/publications.pdf

Version: 2024-02-01

17440 20358 14,597 172 63 116 citations h-index g-index papers 174 174 174 9506 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synergistic Coupling between Li _{6.75} 0.250 ₁₂ and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes. Journal of the American Chemical Society, 2017, 139, 13779-13785.	13.7	698
2	Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design. Science, 2019, 365, 578-582.	12.6	662
3	Giant Energy Density and Improved Discharge Efficiency of Solutionâ€Processed Polymer Nanocomposites for Dielectric Energy Storage. Advanced Materials, 2016, 28, 2055-2061.	21.0	534
4	Polymer-Based Dielectrics with High Energy Storage Density. Annual Review of Materials Research, 2015, 45, 433-458.	9.3	513
5	Ultrahigh Energy Density of Polymer Nanocomposites Containing BaTiO ₃ @TiO ₂ Nanofibers by Atomicâ€Scale Interface Engineering. Advanced Materials, 2015, 27, 819-824.	21.0	503
6	Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nature Communications, 2018, 9, 1813.	12.8	408
7	Topologicalâ€Structure Modulated Polymer Nanocomposites Exhibiting Highly Enhanced Dielectric Strength and Energy Density. Advanced Functional Materials, 2014, 24, 3172-3178.	14.9	371
8	Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix. Journal of Materials Chemistry, 2012, 22, 16491.	6.7	341
9	Selfâ€Suppression of Lithium Dendrite in Allâ€Solidâ€State Lithium Metal Batteries with Poly(vinylidene) Tj ETQq1	1.07843	14 rgBT /0v
10	Solventâ€Free Synthesis of Thin, Flexible, Nonflammable Garnetâ€Based Composite Solid Electrolyte for Allâ€Solidâ€State Lithium Batteries. Advanced Energy Materials, 2020, 10, 1903376.	19.5	284
11	Enhanced dielectric and ferroelectric properties induced by dopamine-modified BaTiO3 nanofibers in flexible poly(vinylidene fluoride-trifluoroethylene) nanocomposites. Journal of Materials Chemistry, 2012, 22, 8063.	6.7	282
12	High-Energy-Density Ferroelectric Polymer Nanocomposites for Capacitive Energy Storage: Enhanced Breakdown Strength and Improved Discharge Efficiency. Materials Today, 2019, 29, 49-67.	14.2	262
13	Highâ€Throughput Phaseâ€Field Design of Highâ€Energyâ€Density Polymer Nanocomposites. Advanced Materials, 2018, 30, 1704380.	21.0	254
14	Lithium-Salt-Rich PEO/Li _{0.3} La _{0.557} TiO ₃ Interpenetrating Composite Electrolyte with Three-Dimensional Ceramic Nano-Backbone for All-Solid-State Lithium-Ion Batteries. ACS Applied Materials & Diterpart (2018), 10, 24791-24798.	8.0	230
15	Polymer Nanocomposites with Ultrahigh Energy Density and High Discharge Efficiency by Modulating their Nanostructures in Three Dimensions. Advanced Materials, 2018, 30, e1707269.	21.0	226
16	BiFeO ₃ â€"SrTiO ₃ thin film as a new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance. Journal of Materials Chemistry A, 2017, 5, 5920-5926.	10.3	218
17	Nanocomposite Membranes Enhance Bone Regeneration Through Restoring Physiological Electric Microenvironment. ACS Nano, 2016, 10, 7279-7286.	14.6	208
18	Carbon Nanotube Array/Polymer Core/Shell Structured Composites with High Dielectric Permittivity, Low Dielectric Loss, and Large Energy Density. Advanced Materials, 2011, 23, 5104-5108.	21.0	204

#	Article	IF	CITATIONS
19	Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics. Nature Communications, 2019, 10, 1843.	12.8	174
20	High-Conductivity Argyrodite Li ₆ PS ₅ Cl Solid Electrolytes Prepared via Optimized Sintering Processes for All-Solid-State Lithium–Sulfur Batteries. ACS Applied Materials & amp; Interfaces, 2018, 10, 42279-42285.	8.0	170
21	Superior Energy Storage Performances of Polymer Nanocomposites via Modification of Filler/Polymer Interfaces. Advanced Materials Interfaces, 2018, 5, 1800096.	3.7	170
22	Achieving High Energy Density in PVDF-Based Polymer Blends: Suppression of Early Polarization Saturation and Enhancement of Breakdown Strength. ACS Applied Materials & Samp; Interfaces, 2016, 8, 27236-27242.	8.0	158
23	Negatively Charged Nanosheets Significantly Enhance the Energyâ€Storage Capability of Polymerâ€Based Nanocomposites. Advanced Materials, 2020, 32, e1907227.	21.0	156
24	Achieving high capacity in bulk-type solid-state lithium ion battery based on Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12 electrolyte: Interfacial resistance. Journal of Power Sources, 2016, 324, 349-357.	7.8	154
25	Largely enhanced energy density in flexible P(VDF-TrFE) nanocomposites by surface-modified electrospun BaSrTiO ₃ fibers. Journal of Materials Chemistry A, 2013, 1, 1688-1693.	10.3	151
26	Synergy of micro-/mesoscopic interfaces in multilayered polymer nanocomposites induces ultrahigh energy density for capacitive energy storage. Nano Energy, 2019, 62, 220-229.	16.0	144
27	Effect of sintering temperature on structure and ionic conductivity of Li7â^'xLa3Zr2O12â^'0.5x (x=0.5~0.7) ceramics. Solid State Ionics, 2011, 204-205, 41-45.	2.7	142
28	Significant enhancement in the visible light photocatalytic properties of BiFeO ₃ –graphene nanohybrids. Journal of Materials Chemistry A, 2013, 1, 823-829.	10.3	140
29	Enhanced microwave absorption in nickel/hexagonal-ferrite/polymer composites. Applied Physics Letters, 2006, 89, 132504.	3.3	139
30	Significant enhancement in energy density of polymer composites induced by dopamine-modified Ba0.6Sr0.4TiO3 nanofibers. Applied Physics Letters, 2012, 101, .	3.3	139
31	Addressing the Interface Issues in All-Solid-State Bulk-Type Lithium Ion Battery via an All-Composite Approach. ACS Applied Materials & Samp; Interfaces, 2017, 9, 9654-9661.	8.0	139
32	High energy density of polymer nanocomposites at a low electric field induced by modulation of their topological-structure. Journal of Materials Chemistry A, 2016, 4, 8359-8365.	10.3	137
33	Modulation of topological structure induces ultrahigh energy density of graphene/Ba 0.6 Sr 0.4 TiO 3 nanofiber/polymer nanocomposites. Nano Energy, 2015, 18, 176-186.	16.0	136
34	Polymer Nanocomposites with Interpenetrating Gradient Structure Exhibiting Ultrahigh Discharge Efficiency and Energy Density. Advanced Energy Materials, 2019, 9, 1803411.	19.5	132
35	Large energy density at high-temperature and excellent thermal stability in polyimide nanocomposite contained with small loading of BaTiO3 nanofibers. Applied Surface Science, 2018, 458, 743-750.	6.1	126
36	Ultrahigh discharge efficiency in multilayered polymer nanocomposites of high energy density. Energy Storage Materials, 2019, 18, 213-221.	18.0	125

#	Article	IF	CITATIONS
37	Bandâ€Gap Engineering and Enhanced Photocatalytic Activity of Sm and Mn Doped BiFeO ₃ Nanoparticles. Journal of the American Ceramic Society, 2017, 100, 31-40.	3.8	117
38	Highly enhanced energy density induced by hetero-interface in sandwich-structured polymer nanocomposites. Journal of Materials Chemistry A, 2013, 1, 12321.	10.3	116
39	Hierarchical interfaces induce high dielectric permittivity in nanocomposites containing TiO ₂ @BaTiO ₃ nanofibers. Nanoscale, 2014, 6, 6701-6709.	5.6	115
40	The Gadolinium (Gd3+) and Tin (Sn4+) Co-doped BiFeO3 Nanoparticles as New Solar Light Active Photocatalyst. Scientific Reports, 2017, 7, 42493.	3.3	115
41	High Li ion conductivity in strontium doped Li7La3Zr2O12 garnet. Solid State Ionics, 2013, 243, 36-41.	2.7	105
42	Effects of Li source on microstructure and ionic conductivity of Al-contained Li6.75La3Zr1.75Ta0.25O12 ceramics. Journal of the European Ceramic Society, 2015, 35, 561-572.	5.7	101
43	Structural transitions and enhanced ferroelectricity in Ca and Mn co-doped BiFeO3 thin films. Journal of Applied Physics, 2011, 110, .	2.5	100
44	Polymer nanocomposites with high energy storage densities. MRS Bulletin, 2015, 40, 753-759.	3.5	99
45	Dielectric and energy storage performances of polyimide/BaTiO3 nanocomposites at elevated temperatures. Journal of Applied Physics, 2017, 121, .	2.5	98
46	Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification. Journal of Materials Chemistry A, 2018, 6, 4649-4657.	10.3	98
47	Significantly increased energy density and discharge efficiency at high temperature in polyetherimide nanocomposites by a small amount of Al ₂ O ₃ nanoparticles. Journal of Materials Chemistry A, 2020, 8, 24536-24542.	10.3	98
48	Anisotropic thermal conductivity of the Aurivillus phase, bismuth titanate (Bi4Ti3O12): A natural nanostructured superlattice. Applied Physics Letters, 2008, 93, .	3.3	97
49	Chemical compatibility between garnet-like solid state electrolyte Li6.75La3Zr1.75Ta0.25O12 and major commercial lithium battery cathode materials. Journal of Materiomics, 2016, 2, 256-264.	5.7	96
50	Facial Synthesis and Photoreaction Mechanism of BiFeO ₃ /Bi ₂ Fe ₄ O ₉ Heterojunction Nanofibers. ACS Sustainable Chemistry and Engineering, 2017, 5, 4630-4636.	6.7	96
51	Polymer nanocomposite dielectrics for electrical energy storage. National Science Review, 2017, 4, 23-25.	9.5	93
52	Phaseâ€Field Model of Electrothermal Breakdown in Flexible Highâ€Temperature Nanocomposites under Extreme Conditions. Advanced Energy Materials, 2018, 8, 1800509.	19.5	90
53	Bandgap engineering and enhanced interface coupling of graphene–BiFeO ₃ nanocomposites as efficient photocatalysts under visible light. Journal of Materials Chemistry A, 2014, 2, 1967-1973.	10.3	87
54	Free-standing sulfide/polymer composite solid electrolyte membranes with high conductance for all-solid-state lithium batteries. Energy Storage Materials, 2020, 25, 145-153.	18.0	85

#	Article	IF	Citations
55	Sol–gel derived Li–La–Zr–O thin films as solid electrolytes for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 13277.	10.3	84
56	High-energy-density dielectric films based on polyvinylidene fluoride and aromatic polythiourea for capacitors. Journal of Materials Chemistry A, 2014, 2, 15803-15807.	10.3	84
57	High Cycling Stability for Solidâ€State Li Metal Batteries via Regulating Solvation Effect in Poly(Vinylidene Fluoride)â€Based Electrolytes. Batteries and Supercaps, 2020, 3, 876-883.	4.7	84
58	Tuning Phase Composition of Polymer Nanocomposites toward High Energy Density and High Discharge Efficiency by Nonequilibrium Processing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 29717-29731.	8.0	81
59	Toroidal polar topology in strained ferroelectric polymer. Science, 2021, 371, 1050-1056.	12.6	74
60	High-performance sodium-ion hybrid capacitors based on an interlayer-expanded MoS2/rGO composite: surpassing the performance of lithium-ion capacitors in a uniform system. NPG Asia Materials, 2018, 10, 775-787.	7.9	71
61	Dielectric properties of carbon fiber filled low-density polyethylene. Journal of Applied Physics, 2003, 93, 5543-5545.	2.5	67
62	Effect of calcining and Al doping on structure and conductivity of Li 7 La 3 Zr 2 O 12. Solid State lonics, 2014, 265, 7-12.	2.7	67
63	An in Situ-Formed Mosaic Li ₇ Sn ₃ /LiF Interface Layer for High-Rate and Long-Life Garnet-Based Lithium Metal Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 34939-34947.	8.0	66
64	A surface-modified TiO ₂ nanorod array/P(VDFâ€"HFP) dielectric capacitor with ultra high energy density and efficiency. Journal of Materials Chemistry C, 2017, 5, 12777-12784.	5.5	65
65	Modulating Surface Potential by Controlling the \hat{l}^2 Phase Content in Poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /C 2018, 7, e1701466.	Overlock 1 7.6	
66	Thickness-dependent voltage-modulated magnetism in multiferroic heterostructures. Applied Physics Letters, 2012, 100 , .	3.3	61
67	Preparation and electrochemical properties of Zr-site substituted Li7La3(Zr2â^'xMx)O12 (MÂ=ÂTa, Nb) solid electrolytes. Journal of Power Sources, 2014, 261, 206-211.	7.8	61
68	Non-intuitive concomitant enhancement of dielectric permittivity, breakdown strength and energy density in percolative polymer nanocomposites by trace Ag nanodots. Journal of Materials Chemistry A, 2019, 7, 15198-15206.	10.3	61
69	Interfacial Coupling Boosts Giant Electrocaloric Effects in Relaxor Polymer Nanocomposites: In Situ Characterization and Phaseâ€Field Simulation. Advanced Materials, 2019, 31, e1801949.	21.0	60
70	Ferromagnetic and photocatalytic behaviors observed in Ca-doped BiFeO3 nanofibres. Journal of Applied Physics, 2013, 113, 146101.	2.5	59
71	Super Longâ€Cycling Allâ€Solidâ€State Battery with Thin Li ₆ PS ₅ Clâ€Based Electrolyte. Advanced Energy Materials, 2022, 12, .	19.5	58
72	Optimizing direct magnetoelectric coupling in Pb(Zr,Ti)O3/Ni multiferroic film heterostructures. Applied Physics Letters, 2015, 106, .	3.3	56

#	Article	IF	CITATIONS
73	Lithium Argyrodite as Solid Electrolyte and Cathode Precursor for Solidâ€State Batteries with Long Cycle Life. Advanced Energy Materials, 2021, 11, 2101370.	19.5	56
74	Effects of Li6.75La3Zr1.75Ta0.25O12 on chemical and electrochemical properties of polyacrylonitrile-based solid electrolytes. Solid State Ionics, 2018, 327, 32-38.	2.7	55
75	Improving ionic conductivity of Li0.35La0.55TiO3 ceramics by introducing Li7La3Zr2O12 sol into the precursor powder. Solid State Ionics, 2013, 235, 8-13.	2.7	54
76	Excellent Stability in Polyetherimide/SiO $<$ sub $>$ 2 $<$ /sub $>$ Nanocomposites with Ultrahigh Energy Density and Discharge Efficiency at High Temperature. Small, 2022, 18, .	10.0	54
77	Thickness-dependent dielectric and energy storage properties of (Pb0.96La0.04)(Zr0.98Ti0.02)O3 antiferroelectric thin films. Journal of Applied Physics, 2016, 119, .	2.5	52
78	High-conductivity free-standing Li6PS5Cl/poly(vinylidene difluoride) composite solid electrolyte membranes for lithium-ion batteries. Journal of Materiomics, 2020, 6, 70-76.	5.7	51
79	NiFe Layered Double Hydroxides Grown on a Corrosion ell Cathode for Oxygen Evolution Electrocatalysis. Advanced Energy Materials, 2022, 12, 2102372.	19.5	51
80	Garnet-type oxide electrolyte with novel porous-dense bilayer configuration for rechargeable all-solid-state lithium batteries. lonics, 2017, 23, 2521-2527.	2.4	50
81	High Capacity, Superior Cyclic Performances in All-Solid-State Lithium-Ion Batteries Based on 78Li ₂ S-22P ₂ S ₅ Glass-Ceramic Electrolytes Prepared via Simple Heat Treatment. ACS Applied Materials & Samp; Interfaces, 2017, 9, 28542-28548.	8.0	49
82	Microstructure Manipulation for Enhancing the Resistance of Garnet-Type Solid Electrolytes to "Short Circuit―by Li Metal Anodes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 5928-5937.	8.0	49
83	Enhancement of thermoelectric properties by atomic-scale percolation in digenite Cu _x S. Journal of Materials Chemistry A, 2014, 2, 9486-9489.	10.3	48
84	High-performance all-solid-state lithium–sulfur batteries with sulfur/carbon nano-hybrids in a composite cathode. Journal of Materials Chemistry A, 2018, 6, 23345-23356.	10.3	48
85	Enhancing ionic conductivity of Li0.35La0.55TiO3 ceramics by introducing Li7La3Zr2O12. Electrochimica Acta, 2012, 80, 133-139.	5.2	45
86	Machine learning in energy storage materials. , 2022, 1, 175-195.		45
87	Dielectric behavior of graphene/BaTiO3/polyvinylidene fluoride nanocomposite under high electric field. Applied Physics Letters, 2013, 103, .	3.3	44
88	Dielectric and Ferroelectric Properties of BaTiO3 Nanofibers Prepared viaÂElectrospinning. Journal of Materials Science and Technology, 2014, 30, 743-747.	10.7	42
89	Ultrathin Li7La3Zr2O12@PAN composite polymer electrolyte with high conductivity for all-solid-state lithium-ion battery. Solid State Ionics, 2020, 347, 115227.	2.7	42
90	Enhanced breakdown strength and suppressed leakage current of polyvinylidene fluoride nanocomposites by two-dimensional ZrO ₂ nanosheets. Materials Express, 2016, 6, 277-282.	0.5	41

#	Article	IF	Citations
91	High-performance Li ₆ PS ₅ Cl-based all-solid-state lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 18612-18618.	10.3	40
92	Response to Comment on "Selfâ€Suppression of Lithium Dendrite in Allâ€Solidâ€State Lithium Metal Batteries with Poly(vinylidene difluoride)â€Based Solid Electrolytes― Advanced Materials, 2020, 32, e2000026.	21.0	40
93	Dual-ion hybrid supercapacitor: Integration of Li-ion hybrid supercapacitor and dual-ion battery realized by porous graphitic carbon. Journal of Energy Chemistry, 2020, 42, 180-184.	12.9	39
94	Designing polymer nanocomposites with high energy density using machine learning. Npj Computational Materials, $2021, 7, \dots$	8.7	39
95	Synergistic effect of processing and composition x on conductivity of xLi 2 S-(100 \hat{a} ° x)P 2 S 5 electrolytes. Solid State Ionics, 2017, 305, 1-6.	2.7	37
96	Enhanced lithium-ion conductivity in a LiZr 2 (PO 4) 3 solid electrolyte by Al doping. Ceramics International, 2017, 43, S598-S602.	4.8	37
97	High Capacity and Superior Cyclic Performances of All-Solid-State Lithium Batteries Enabled by a Glass–Ceramics Solo. ACS Applied Materials & Interfaces, 2018, 10, 10029-10035.	8.0	37
98	Enhancements of dielectric and energy storage performances in leadâ€free films with sandwich architecture. Journal of the American Ceramic Society, 2019, 102, 936-943.	3.8	37
99	Flexible Robust and Highâ€Density FeRAM from Array of Organic Ferroelectric Nanoâ€Lamellae by Selfâ€Assembly. Advanced Science, 2019, 6, 1801931.	11.2	37
100	Tunable magnetic and electrical behaviors in perovskite oxides by oxygen octahedral tilting. Science China Materials, 2015, 58, 302-312.	6.3	36
101	Refreshing Piezoelectrics: Distinctive Role of Manganese in Lead-Free Perovskites. ACS Applied Materials & Company (Interfaces, 2018, 10, 37298-37306.	8.0	36
102	Thickness-dependent converse magnetoelectric coupling in bi-layered Ni/PZT thin films. Journal of Applied Physics, 2012, 111 , .	2.5	34
103	High energy density and efficiency achieved in nanocomposite film capacitors via structure modulation. Applied Physics Letters, 2018, 112, .	3.3	34
104	An Allâ€Scale Hierarchical Architecture Induces Colossal Roomâ€Temperature Electrocaloric Effect at Ultralow Electric Field in Polymer Nanocomposites. Advanced Materials, 2020, 32, e1907927.	21.0	34
105	X-ray absorption near-edge spectroscopy study on Ge-doped Li7La3Zr2O12: enhanced ionic conductivity and defect chemistry. Electrochimica Acta, 2014, 115, 581-586.	5.2	33
106	Large d ₃₃ and enhanced ferroelectric/dielectric properties of poly(vinylidene) Tj ETQq0 0 0 rgBT /Ovenanofibers. RSC Advances, 2015, 5, 51302-51307.	erlock 10 T 3.6	f 50 147 Td 33
107	Remote Tuning of Builtâ€In Magnetoelectric Microenvironment to Promote Bone Regeneration by Modulating Cellular Exposure to Arginylglycylaspartic Acid Peptide. Advanced Functional Materials, 2021, 31, 2006226.	14.9	33
108	High-temperature electrical energy storage performances of dipolar glass polymer nanocomposites filled with trace ultrafine nanoparticles. Chemical Engineering Journal, 2021, 420, 127614.	12.7	33

#	Article	IF	CITATIONS
109	High capacity and cyclic performance in a three-dimensional composite electrode filled with inorganic solid electrolyte. Journal of Power Sources, 2014, 249, 306-310.	7.8	31
110	Low-dimensional nanostructured photocatalysts. Journal of Advanced Ceramics, 2015, 4, 159-182.	17.4	31
111	Space charge effects on the dielectric response of polymer nanocomposites. Applied Physics Letters, 2017, 111, .	3.3	31
112	Switchable voltage control of the magnetic coercive field via magnetoelectric effect. Journal of Applied Physics, 2011, 110, .	2.5	30
113	Enhanced Photocatalytic Performance under Visible and Near-Infrared Irradiation of Cu1.8Se/Cu3Se2 Composite via a Phase Junction. Nanomaterials, 2017, 7, 19.	4.1	29
114	Anisotropic electrical properties of semiconductive Bi2S3 nanorod filled ferroelectric polyvinylidene fluoride. Chemical Physics Letters, 2004, 396, 420-423.	2.6	27
115	High-frequency magnetic and dielectric properties of a three-phase composite of nickel, Co2Z ferrite, and polymer. Journal of Applied Physics, 2006, 99, 123909.	2.5	27
116	Photocatalytic behaviors observed in Ba and Mn doped BiFeO3 nanofibers. Journal of Electroceramics, 2013, 31, 271-274.	2.0	27
117	Colossal thermoelectric enhancement in Cu _{2+x} Zn _{1â^x} SnS ₄ solid solution by local disordering of crystal lattice and multi-scale defect engineering. Journal of Materials Chemistry A, 2020, 8, 10909-10916.	10.3	27
118	Photocatalytic and magnetic behaviors of BiFeO3 thin films deposited on different substrates. Journal of Applied Physics, 2014, 116 , .	2.5	25
119	High capacity and rate performance of LiNi _{0.5} composite cathode for bulk-type all-solid-state lithium battery. Journal of Materials Chemistry A, 2014, 2, 13332.	10.3	25
120	High electrocaloric cooling power of relaxor ferroelectric BaZr Ti1–O3 ceramics within broad temperature range. Science Bulletin, 2018, 63, 356-361.	9.0	25
121	Mechanical properties of polymer-infiltrated-ceramic (sodium aluminum silicate) composites for dental restoration. Journal of Dentistry, 2017, 62, 91-97.	4.1	24
122	Enhanced electric resistivity and dielectric energy storage by vacancy defect complex. Energy Storage Materials, 2021, 42, 836-844.	18.0	24
123	Effects of Reducing Atmosphere on the Luminescence of Eu ³⁺ â€Doped Yttriaâ€Stabilized Zirconia Sensor Layers in Thermal Barrier Coatings. Journal of the American Ceramic Society, 2009, 92, 125-129.	3.8	23
124	Mesoporous template-free gyroid-like nanostructures based on La and Mn co-doped bismuth ferrites with improved photocatalytic activity. RSC Advances, 2016, 6, 114183-114189.	3.6	23
125	A simple method for direct observation of the converse magnetoelectric effect in magnetic/ferroelectric composite thin films. Journal of Applied Physics, 2011, 110, 096106.	2.5	20
126	Influence of Al2O3 additive on the dielectric behavior and energy density of Ba0.5Sr0.5TiO3 ceramics. Journal of Electroceramics, 2012, 29, 95-98.	2.0	19

#	Article	IF	CITATIONS
127	Robust CaZrO3-modified (K, Na)NbO3-based lead-free piezoceramics: High fatigue resistance insensitive to temperature and electric field. Journal of Applied Physics, 2015, 118, .	2.5	19
128	Visible Light Photocatalytic Activity of Bismuth Ferrites Tuned by Bi/Fe Ratio. Journal of the American Ceramic Society, 2016, 99, 1133-1136.	3.8	19
129	Generation of hydrogen under visible light irradiation with enhanced photocatalytic activity of Bi ₂ <scp>WO</scp> ₆ /Cu _{1.8} Se for organic pollutants under Visâ€NIR light reign. Journal of the American Ceramic Society, 2018, 101, 3015-3025.	3.8	19
130	Three-dimensional structured asymmetric electrolytes for high interface stability and fast Li-ion transport in solid-state Li-metal batteries. Materials Today Energy, 2020, 18, 100522.	4.7	19
131	An alternating multilayer architecture boosts ultrahigh energy density and high discharge efficiency in polymer composites. RSC Advances, 2020, 10, 5886-5893.	3.6	19
132	Enhanced electrocaloric strength in P(VDF-TrFE-CFE) by decreasing the crystalline size. Journal of Materiomics, 2019, 5, 357-362.	5.7	18
133	Topologically distributed one-dimensional TiO ₂ nanofillers maximize the dielectric energy density in a P(VDF-HFP) nanocomposite. Journal of Materials Chemistry A, 2020, 8, 18244-18253.	10.3	18
134	High-throughput data-driven interface design of high-energy-density polymer nanocomposites. Journal of Materiomics, 2020, 6, 573-581.	5.7	18
135	Enhanced magnetoelectric coupling in Pb(Zr0.52Ti0.48)O3 film-on-CoFe2O4 bulk ceramic composite with LaNiO3 bottom electrode. Journal of Materials Science, 2013, 48, 1021-1026.	3.7	17
136	A Ferroconcreteâ€Like Allâ€Organic Nanocomposite Exhibiting Improved Mechanical Property, High Breakdown Strength, and High Energy Efficiency. Macromolecular Materials and Engineering, 2019, 304, 1900433.	3.6	17
137	Magnetic and Photocatalytic Behaviors of Baâ€Doped BiFeO ₃ Nanofibers. International Journal of Applied Ceramic Technology, 2014, 11, 676-680.	2.1	15
138	An Optical/Ferroelectric Multiplexing Multidimensional Nonvolatile Memory from Ferroelectric Polymer. Advanced Materials, 2022, 34, e2202181.	21.0	15
139	Magnetic and Photocatalytic Behaviors of Ca Mn Co-Doped BiFeO ₃ Nanofibres. Modern Research in Catalysis, 2013, 02, 1-5.	1.7	14
140	Ultrathin Nâ€doped carbonâ€coated TiO ₂ coaxial nanofibers as anodes for lithium ion batteries. Journal of the American Ceramic Society, 2017, 100, 2939-2947.	3.8	14
141	Tuning Porosity of Reduced Graphene Oxide Membrane Materials by Alkali Activation. Nanomaterials, 2020, 10, 2093.	4.1	14
142	Resistance to Lowâ€Temperature Degradation of Equimolar YO _{1.5} â€"TaO _{2.5} Stabilized Tetragonal ZrO ₂ Ceramics in Air. Journal of the American Ceramic Society, 2010, 93, 2024-2027.	3.8	13
143	Effects of Sm3+ doping on the temperature-dependent fluorescence intensity ratio of Er3+, Sm3+-co doped-yttria stabilized zirconia. Journal of Alloys and Compounds, 2012, 536, 161-165.	5.5	13
144	Structure design boosts concomitant enhancement of permittivity, breakdown strength, discharged energy density and efficiency in allâ€organic dielectrics. IET Nanodielectrics, 2020, 3, 147-155.	4.1	13

#	Article	IF	CITATIONS
145	Spectral Thermal Spreading Resistance of Wide-Bandgap Semiconductors in Ballistic-Diffusive Regime. IEEE Transactions on Electron Devices, 2022, 69, 3047-3054.	3.0	13
146	All-solid-state lithium battery with high capacity enabled by a new way of composite cathode design. Solid State Ionics, 2017, 310, 44-49.	2.7	12
147	Modulating interfacial charge distribution and compatibility boosts high energy density and discharge efficiency of polymer nanocomposites. RSC Advances, 2019, 9, 35990-35997.	3.6	12
148	Enhanced electrocaloric strength of P(VDF-TrFE-CFE) induced by edge-on lamellae. Journal of Materials Chemistry C, 2019, 7, 3212-3217.	5 . 5	11
149	Self-etching Ni–Co hydroxides@Ni–Cu nanowire arrays with enhancing ultrahigh areal capacitance for flexible thin-film supercapacitors. Rare Metals, 2017, 36, 691-697.	7.1	10
150	Interfacial effects of BaTiO3@TiO2 nanofibers on dielectric relaxation processes of P(VDF-TrFE-CFE) nanocomposites. Ceramics International, 2020, 46, 1119-1123.	4.8	9
151	Hybrid Monte Carlo-Diffusion Studies of Modeling Self-Heating in Ballistic-Diffusive Regime for Gallium Nitride HEMTs. Journal of Electronic Packaging, Transactions of the ASME, 2023, 145, .	1.8	9
152	C4+ Surrogate Models for Thermophysical Properties of Aviation Kerosene RP-3 at Supercritical Pressures. Energy & Energy	5.1	7
153	Tunnel elasticity enhancement effect of 3D submicron ceramics (Al2O3, TiO2, ZrO2) fiber on polydimethylsiloxane (PDMS). Journal of Advanced Ceramics, 2021, 10, 502-508.	17.4	7
154	Evaluating the electro-optical effect in alternating current-voltage-modulated Kerr response for multiferroic heterostructures. Journal of Applied Physics, 2013, 114, .	2.5	6
155	NiFe Layered Double Hydroxides Grown on a Corrosion ell Cathode for Oxygen Evolution Electrocatalysis (Adv. Energy Mater. 2/2022). Advanced Energy Materials, 2022, 12, .	19.5	6
156	Magnetic and dielectric properties of a double-percolating Ni0.3Zn0.7Fe1.95O4-Ni-polymer composite. Journal of Electroceramics, 2008, 21, 385-389.	2.0	5
157	Polymer-infiltrated layered silicates for dental restorative materials. Rare Metals, 2019, 38, 1003-1014.	7.1	5
158	Regulating dielectric performances of Poly(vinylidene fluoride) nanocomposites by individually controlling shell thickness of Core@Doubleâ€Shells structured nanowires. IET Nanodielectrics, 2021, 4, 11-20.	4.1	5
159	Highly Sensitive Strain Sensor from Topologicalâ€Structure Modulated Dielectric Elastic Nanocomposites. Advanced Materials Technologies, 2022, 7, 2101190.	5.8	5
160	Optical Vector Vortex Generation by Spherulites with Cylindrical Anisotropy. Nano Letters, 2022, 22, 2444-2449.	9.1	5
161	Polymer Nanocomposites: Polymer Nanocomposites with Interpenetrating Gradient Structure Exhibiting Ultrahigh Discharge Efficiency and Energy Density (Adv. Energy Mater. 15/2019). Advanced Energy Materials, 2019, 9, 1970047.	19.5	4
162	A pyrotoroidic transition in ferroelectric polymer. Matter, 2022, 5, 3041-3052.	10.0	4

#	Article	IF	CITATIONS
163	Tunable photoelectric response in NiO-based heterostructures by various orientations. Applied Physics Letters, 2018, 112, .	3.3	3
164	Phase-separation-driven formation of Nickel–Cobalt oxide nanotubes as high-capacity anode materials for lithium-ion batteries. Materials Research Letters, 2019, 7, 368-375.	8.7	3
165	Domain growth dynamics in PMN-PT ferroelectric thin films. Journal of Materials Science, 2019, 54, 10600-10608.	3.7	3
166	Blow-spun N-doped carbon fiber based high performance flexible lithium ion capacitors. RSC Advances, 2020, 10, 9833-9839.	3.6	3
167	Concurrently enhanced mechanical properties and capacitive performance in all-organic dielectric polymer blend via phase separation. Journal of Applied Physics, 2022, 131, .	2.5	3
168	Ferromagnetic behaviors in NiO-based nanofibers synthesized by electrospinning method. Journal of Applied Physics, 2012, 112, 116101.	2.5	2
169	Bismuth Oxysulfide and Its Polymer Nanocomposites for Efficient Purification. Materials, 2018, 11, 447.	2.9	2
170	Polymer Nanocomposites Dielectrics for Energy Applications. Engineering Materials and Processes, 2017, , 511-534.	0.4	1
171	Kernel Product Neural Networks. IEEE Access, 2021, 9, 167076-167083.	4.2	1
172	Well-Dispersed Co/CoO/C Nanospheres with Tunable Morphology as High-Performance Anodes for Lithium Ion Batteries. Materials, 2016, 9, 955.	2.9	O