Eva NohýnkovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3075587/publications.pdf

Version: 2024-02-01

		361413	361022
51	1,349	20	35
papers	citations	h-index	g-index
51	51	51	1185
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Genome analysis and comparative genomics of a Giardia intestinalis assemblage E isolate. BMC Genomics, 2010, 11, 543.	2.8	125
2	Genetic Analysis of <i>Giardia</i> from Hoofed Farm Animals Reveals Artiodactyl‧pecific and Potentially Zoonotic Genotypes. Journal of Eukaryotic Microbiology, 1997, 44, 626-635.	1.7	112
3	Cell Division of Giardia intestinalis: Flagellar Developmental Cycle Involves Transformation and Exchange of Flagella between Mastigonts of a Diplomonad Cell. Eukaryotic Cell, 2006, 5, 753-761.	3.4	93
4	Glycogen Phosphorylase in <i>Acanthamoeba</i> spp.: Determining the Role of the Enzyme during the Encystment Process Using RNA Interference. Eukaryotic Cell, 2008, 7, 509-517.	3.4	79
5	Salivary proteins and glycoproteins in phlebotomine sandflies of various species, sex and age. Medical and Veterinary Entomology, 2000, 14, 251-256.	1.5	76
6	Susceptibility to Leishmania major infection in mice: multiple loci and heterogeneity of immunopathological phenotypes. Genes and Immunity, 2000, 1, 200-206.	4.1	75
7	Cell division ofGiardia intestinalis: Assembly and disassembly of the adhesive disc, and the cytokinesis. Cytoskeleton, 2007, 64, 288-298.	4.4	55
8	Localization of gamma-tubulin in interphase and mitotic cells of a unicellular eukaryote, Giardia intestinalis. European Journal of Cell Biology, 2000, 79, 438-445.	3.6	52
9	Cytogenetic evidence for diversity of two nuclei within a single diplomonad cell of Giardia. Chromosoma, 2007, 116, 65-78.	2.2	51
10	Amebic Encephalitis Caused by Balamuthia mandrillaris in a Czech Child: Description of the First Case from Europe. Pathology Research and Practice, 1998, 194, 423-429.	2.3	49
11	Giardia in Humans and Animals. , 1995, , 225-422.		45
12	Demonstration of glycosomes (microbodies) in the bodonid flagellate Trypanoplasma borelli (protozoa, kinetoplastida). Molecular and Biochemical Parasitology, 1988, 30, 155-163.	1.1	44
13	The effect of metronidazole on the cell cycle and DNA in metronidazole-susceptible and -resistant Giardia cell lines. Molecular and Biochemical Parasitology, 2014, 198, 75-81.	1.1	36
14	Giardiainfection in pigs: detection andin vitroisolation of trophozoites of the Giardia intestinalisgroup. Parasitology, 1991, 102, 163-166.	1.5	31
15	Giardia intestinalis: Detection and Characterization of a Pyruvate Phosphate Dikinase. Experimental Parasitology, 1993, 76, 438-441.	1.2	31
16	Stress-Induced Pseudocyst Formation - A Newly Identified Mechanism of Protection against Organic Solvents in Acanthamoebae of the T4 Genotype. Protist, 2011, 162, 58-69.	1.5	29
17	Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis. Immunogenetics, 2002, 54, 174-183.	2.4	28
18	Constitutive aneuploidy and genomic instability in the singleâ€celled eukaryote <i>Giardia intestinalis</i> . MicrobiologyOpen, 2016, 5, 560-574.	3.0	28

#	Article	IF	Citations
19	Preparation of highly infective Leishmania promastigotes by cultivation on SNB-9 biphasic medium. Journal of Microbiological Methods, 2011, 87, 273-277.	1.6	25
20	Propylene glycol and contact-lens solutions containing this diol induce pseudocyst formation in acanthamoebae. Experimental Parasitology, 2011, 127, 326-328.	1.2	23
21	Structural organization of very small chromosomes: study on a single-celled evolutionary distant eukaryote Giardia intestinalis. Chromosoma, 2015, 124, 81-94.	2.2	23
22	Giardia intestinalis: Aphidicolin influence on the trophozoite cell cycle. Experimental Parasitology, 2010, 124, 159-166.	1.2	22
23	Ultrastructure of Cochlosoma anatis Kotlán, 1923 and taxonomic position of the family Cochlosomatidae (Parabasala: Trichomonadida). European Journal of Protistology, 1996, 32, 190-201.	1.5	19
24	Incorporation of iron into Tritrichomonas foetus cell compartments reveals ferredoxin as a major iron-binding protein in hydrogenosomes. Microbiology (United Kingdom), 2003, 149, 1911-1921.	1.8	19
25	The first multilocus genotype analysis of <i>Giardia intestinalis</i> in humans in the Czech Republic. Parasitology, 2018, 145, 1577-1587.	1.5	18
26	Absence of a conventional spindle mitotic checkpoint in the binucleated single-celled parasite Giardia intestinalis. European Journal of Cell Biology, 2016, 95, 355-367.	3.6	17
27	How Nuclei of Giardia Pass through Cell Differentiation: Semi-open Mitosis Followed by Nuclear Interconnection. Protist, 2012, 163, 465-479.	1.5	16
28	Inheritance of the reduced mitochondria of Giardia intestinalis is coupled to the flagellar maturation cycle. BMC Biology, 2021, 19, 193.	3.8	14
29	A natural zoonotic giardiasis: Infection of a child via Giardia cysts in pet chinchilla droppings. Parasitology International, 2018, 67, 759-762.	1.3	11
30	Visceral leishmaniasis with cutaneous symptoms in a patient treated with infliximab followed by fatal consequences. Dermatologic Therapy, 2014, 27, 131-134.	1.7	10
31	Unequal distribution of genes and chromosomes refers to nuclear diversification in the binucleated Giardia intestinalis. International Journal for Parasitology, 2019, 49, 463-470.	3.1	10
32	Fine Structural Morphology of the Nucleus of Trypanosoma danilewskyi (Kinetoplastida,) Tj ETQq0 0 0 rgBT /Ove	rlock 10 T	f 5 <mark>0</mark> 222 Td (1
33	Characterization of telomeres and telomerase from the single-celled eukaryote Giardia intestinalis. Molecular and Biochemical Parasitology, 2017, 211, 31-38.	1.1	8
34	Clone-based haplotyping of Giardia intestinalis assemblage B human isolates. Parasitology Research, 2019, 118, 355-361.	1.6	8
35	Companion animals as a potential source of Giardia intestinalis infection in humans in the Czech Republic – A pilot study. Veterinary Parasitology: Regional Studies and Reports, 2020, 21, 100431.	0.5	8
36	A rapid workflow for the characterization of small numbers of unicellular eukaryotes by using correlative light and electron microscopy. Journal of Microbiological Methods, 2020, 172, 105888.	1.6	7

#	Article	IF	Citations
37	Trehalose During Two Stress Responses in Acanthamoeba: Differentiation Between Encystation and Pseudocyst Formation. Protist, 2017, 168, 649-662.	1.5	6
38	Testing the impact of Whole Genome Amplification on genome comparison using the polyploid flagellated Giardia duodenalis as a model. Experimental Parasitology, 2019, 207, 107776.	1.2	6
39	Nonpathogenic <i>Entamoeba dispar</i> quickly outgrows pathogenic <i>Entamoeba histolytica</i> in mixed xenic cultures. Letters in Applied Microbiology, 2009, 48, 500-503.	2.2	4
40	Imported new world cutaneous leishmaniasis in a traveller from Slovakia. Bratislava Medical Journal, 2015, 116, 203-206.	0.8	4
41	Retortamonadida (with Notes on Carpediemonas-Like Organisms and Caviomonadidae). , 2017, , 1247-1278.		4
42	Another case of coincidental Giardia infection and pancreatic cancer. Parasitology International, 2019, 71, 160-162.	1.3	4
43	DNA content in Acanthamoeba during two stress defense reactions: Encystation, pseudocyst formation and cell cycle. European Journal of Protistology, 2021, 77, 125745.	1.5	4
44	Mannitol is not involved in protective reactions of Acanthamoeba. Molecular and Biochemical Parasitology, 2012, 184, 118-121.	1.1	3
45	Retortamonadida (with Notes on Carpediemonas-Like Organisms and Caviomonadidae)., 2016,, 1-32.		3
46	Cell Cycle Regulation and Cell Division in Giardia. , 2011, , 161-183.		3
47	Freezing of faeces dramatically decreases the viability of Blastocystis sp. and Dientamoeba fragilis. European Journal of Gastroenterology and Hepatology, 2022, 34, 242-243.	1.6	2
48	Molecular evidence of Pneumocystis jirovecii reinfection in a haemato-oncology patient. Scandinavian Journal of Infectious Diseases, 2012, 44, 705-707.	1.5	1
49	Evidence of Pneumocystis jiroveci in human clinical samples in southwestern Slovakia over a 10-year period (2001–2010). Biologia (Poland), 2013, 68, 662-666.	1.5	0
50	Inactivation of Acanthamoeba Cysts in Suspension and on Contaminated Contact Lenses Using Non-Thermal Plasma. Microorganisms, 2021, 9, 1879.	3.6	0
51	In situ visualization of a simple bipartite kinetochore with a single microtubule attachment in Giardia intestinalis (Metamonada). European Journal of Cell Biology, 2022, 101, 151217.	3.6	0