
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/307323/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neutrophil extracellular traps induced by pro-inflammatory cytokines enhance procoagulant activity in NASH patients. Clinics and Research in Hepatology and Gastroenterology, 2022, 46, 101697.	1.5	17
2	Thrombosis and hemorrhage in myeloproliferative neoplasms: The platelet perspective. Platelets, 2022, 33, 955-963.	2.3	1
3	Intestinal Damage in COVID-19: SARS-CoV-2 Infection and Intestinal Thrombosis. Frontiers in Microbiology, 2022, 13, 860931.	3.5	15
4	Long COVID: The Nature of Thrombotic Sequelae Determines the Necessity of Early Anticoagulation. Frontiers in Cellular and Infection Microbiology, 2022, 12, 861703.	3.9	53
5	Persistent Lung Injury and Prothrombotic State in Long COVID. Frontiers in Immunology, 2022, 13, 862522.	4.8	15
6	Extracellular Traps Increase Burden of Bleeding by Damaging Endothelial Cell in Acute Promyelocytic Leukaemia. Frontiers in Immunology, 2022, 13, 841445.	4.8	11
7	CD44–fibrinogen binding promotes bleeding in acute promyelocytic leukemia by in situ fibrin(ogen) deposition. Blood Advances, 2022, 6, 4617-4633.	5.2	6
8	TMEM16F mediated phosphatidylserine exposure and microparticle release on erythrocyte contribute to hypercoagulable state in hyperuricemia. Blood Cells, Molecules, and Diseases, 2022, 96, 102666.	1.4	4
9	Neutrophil extracellular traps enhance procoagulant activity and thrombotic tendency in patients with obstructive jaundice. Liver International, 2021, 41, 333-347.	3.9	5
10	Phosphatidylserine-exposing tumor-derived microparticles exacerbate coagulation and cancer cell transendothelial migration in triple-negative breast cancer. Theranostics, 2021, 11, 6445-6460.	10.0	12
11	COVID‑19 and ischemic stroke: Mechanisms of hypercoagulability (Review). International Journal of Molecular Medicine, 2021, 47, .	4.0	47
12	Microvesicles, blood cells and endothelial cells mediate phosphatidylserineâ€related prothrombotic state in patients with periodontitis. Journal of Periodontology, 2021, , .	3.4	2
13	Hyperuricemia enhances procoagulant activity of vascular endothelial cells through TMEM16F regulated phosphatidylserine exposure and microparticle release. FASEB Journal, 2021, 35, e21808.	0.5	12
14	Neutrophil extracellular traps contribute to tissue plasminogen activator resistance in acute ischemic stroke. FASEB Journal, 2021, 35, e21835.	0.5	22
15	The Central Role of Extracellular Vesicles in the Mechanisms of Thrombosis in COVID-19 Patients With Cancer and Therapeutic Strategies. Frontiers in Cell and Developmental Biology, 2021, 9, 792335.	3.7	3
16	Circulating Microparticles in the Pathogenesis and Early Anticoagulation of Thrombosis in COVID-19 With Kidney Injury. Frontiers in Cell and Developmental Biology, 2021, 9, 784505.	3.7	5
17	Neutrophil Extracellular Traps Induce Intestinal Damage and Thrombotic Tendency in Inflammatory Bowel Disease. Journal of Crohn's and Colitis, 2020, 14, 240-253.	1.3	102
18	Phagocytosis by endothelial cells inhibits procoagulant activity of platelets of essential thrombocythemia in vitro. Journal of Thrombosis and Haemostasis, 2020, 18, 222-233.	3.8	15

#	Article	IF	CITATIONS
19	Endothelial damage and a thin intercellular fibrin network promote haemorrhage in acute promyelocytic leukaemia. EBioMedicine, 2020, 60, 102992.	6.1	8
20	Phosphatidylserine-exposing blood cells, microparticles and neutrophil extracellular traps increase procoagulant activity in patients with pancreatic cancer. Thrombosis Research, 2020, 188, 5-16.	1.7	25
21	Interactions between neutrophil extracellular traps and activated platelets enhance procoagulant activity in acute stroke patients with ICA occlusion. EBioMedicine, 2020, 53, 102671.	6.1	87
22	Prevalence of Low Limb Venous Thromboembolic Events in Mild and Severe/Critically Ill Patients with COVID-19 Despite Pharmacological Thromboprophylaxis. Blood, 2020, 136, 38-38.	1.4	0
23	Neutrophil extracellular traps induced by activated platelets contribute to procoagulant activity in patients with colorectal cancer. Thrombosis Research, 2019, 180, 87-97.	1.7	40
24	Immunological Pathogenesis of Membranous Nephropathy: Focus on PLA2R1 and Its Role. Frontiers in Immunology, 2019, 10, 1809.	4.8	63
25	Intravascular cells and circulating microparticles induce procoagulant activity via phosphatidylserine exposure in heart failure. Journal of Thrombosis and Thrombolysis, 2019, 48, 187-194.	2.1	16
26	Neutrophil extracellular traps enhance procoagulant activity in patients with oral squamous cell carcinoma. Journal of Cancer Research and Clinical Oncology, 2019, 145, 1695-1707.	2.5	58
27	<p>808 nm Near-Infrared Light-Excited UCNPs@mSiO₂-Ce6-GPC3 Nanocomposites For Photodynamic Therapy In Liver Cancer</p> . International Journal of Nanomedicine, 2019, Volume 14, 10009-10021.	6.7	21
28	Phosphatidylserine-exposing blood and endothelial cells contribute to the hypercoagulable state in essential thrombocythemia patients. Annals of Hematology, 2018, 97, 605-616.	1.8	21
29	Arsenic trioxide promoting ETosis in acute promyelocytic leukemia through mTOR-regulated autophagy. Cell Death and Disease, 2018, 9, 75.	6.3	32
30	Procoagulant Activity of Blood and Endothelial Cells via Phosphatidylserine Exposure and Microparticle Delivery in Patients with Diabetic Retinopathy. Cellular Physiology and Biochemistry, 2018, 45, 2411-2420.	1.6	13
31	Phosphatidylserine-exposing blood cells and microparticles induce procoagulant activity in non-valvular atrial fibrillation. International Journal of Cardiology, 2018, 258, 138-143.	1.7	33
32	The Exposure of Phosphatidylserine Influences Procoagulant Activity in Retinal Vein Occlusion by Microparticles, Blood Cells, and Endothelium. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-10.	4.0	12
33	Promyelocytic extracellular chromatin exacerbates coagulation and fibrinolysis in acute promyelocytic leukemia. Blood, 2017, 129, 1855-1864.	1.4	41
34	Enhanced procoagulant activity of platelets after chemotherapy in non-small cell lung cancer. Cancer Biology and Therapy, 2017, 18, 627-634.	3.4	17
35	Phosphatidylserine-mediated platelet clearance by endothelium decreases platelet aggregates and procoagulant activity in sepsis. Scientific Reports, 2017, 7, 4978.	3.3	45
36	Enhanced Procoagulant Activity on Blood Cells after Acute Ischemic Stroke. Translational Stroke Research, 2017, 8, 83-91.	4.2	22

#	Article	IF	CITATIONS
37	Prognostic implications and procoagulant activity of phosphatidylserine exposure of blood cells and microparticles in patients with atrial fibrillation treated with pulmonary vein isolation. Molecular Medicine Reports, 2017, 16, 8579-8588.	2.4	10
38	Neutrophil Extracellular Traps Exacerbate Inflammatory Responses and Thrombotic Tendency in Both a Murine Colitis Model and Patients with Inflammatory Bowel Disease. Blood, 2017, 130, 994-994.	1.4	11
39	Impact of RAD51C-mediated Homologous Recombination on Genomic Integrity in Barrett's Adenocarcinoma Cells. Journal of Gastroenterology and Hepatology Research, 2017, 6, 2286-2295.	0.2	11
40	Microparticles and blood cells induce procoagulant activity via phosphatidylserine exposure in NSTEMI patients following stent implantation. International Journal of Cardiology, 2016, 223, 121-128.	1.7	21
41	Phosphotidylserine exposure and neutrophil extracellular traps enhance procoagulant activity in patients with inflammatory bowel disease. Thrombosis and Haemostasis, 2016, 115, 738-751.	3.4	72
42	Phosphatidylserine on blood cells and endothelial cells contributes to the hypercoagulable state in cirrhosis. Liver International, 2016, 36, 1800-1810.	3.9	19
43	Increased phosphatidylserine-exposing microparticles and their originating cells are associated with the coagulation process in patients with IgA nephropathy. Nephrology Dialysis Transplantation, 2016, 31, 747-759.	0.7	15
44	Neutrophil Extracellular Traps Accelerate Cholestatic Liver Injury through Bile Acids in Bile Duct Ligation Mice. Blood, 2016, 128, 3678-3678.	1.4	0
45	Phosphatidylserine-Mediated Platelet Clearance By Endothelium Decreases Platelet Aggregates and Procoagulant Activity in Sepsis. Blood, 2016, 128, 2538-2538.	1.4	4
46	Platelet binding sites for factor VIII in relation to fibrin and phosphatidylserine. Blood, 2015, 126, 1237-1244.	1.4	37
47	Indolic Uremic Solutes Enhance Procoagulant Activity of Red Blood Cells through Phosphatidylserine Exposure and Microparticle Release. Toxins, 2015, 7, 4390-4403.	3.4	37
48	Thrombotic Role of Blood and Endothelial Cells in Uremia through Phosphatidylserine Exposure and Microparticle Release. PLoS ONE, 2015, 10, e0142835.	2.5	44
49	Procoagulant activity induced by transcatheter closure of atrial septal defects is associated with exposure of phosphatidylserine on microparticles, platelets and red blood cells. Thrombosis Research, 2015, 136, 354-360.	1.7	8
50	Novel Additive Solution "Aayusol" Significantly Preserves Platelets in Lesion-Free State during Extended Storage. Blood, 2015, 126, 3558-3558.	1.4	0
51	Elevated APE1 Mediates Dysregulation of Homologous Recombination in Myeloma: Mechanisms and Translational Significance. Blood, 2014, 124, 2074-2074.	1.4	2
52	Dysregulation of SHFM1, a Novel Target for Prevention of Genomic Instability in Myeloma, Is Associated with Epigenetic Changes at Specific CpG Sites. Blood, 2014, 124, 862-862.	1.4	1
53	Extended Storage of Platelets in a Novel Organ Preservation Solution, Somah. Blood, 2014, 124, 5110-5110.	1.4	0
54	Thrombin-Stimulated Platelets Have Functional Binding Sites For Factor VIIIa That Are Distinct From Phosphatidylserine. Blood, 2013, 122, 3582-3582.	1.4	0

#	Article	IF	CITATIONS
55	Putative Phospholipid "scramblase―of Scott Syndrome, TMEM16F/Ano6, Mediates Phosphatidylserine Exposure On Filopodia and Cell Margins of Viable Endothelial Cells Blood, 2012, 120, 2180-2180.	1.4	0
56	Lactadherin C2 Domain Exhibits Ptd-L-Ser Specificity and Anticoagulant Properties Distinct From Homologous Factor VIII C2 Domain and Full-Length Lactadherin. Blood, 2012, 120, 1105-1105.	1.4	1
57	Erythrocytes and Platelets May Contribute to Hypercoagulability In Nephrotic Syndrome Through Enhanced Phosphatidylserine Exposure and Microparticles Release. Blood, 2011, 118, 36-36.	1.4	0
58	Daunorubicin Induces Procoagulant Activity of Cultured Endothelial Cells through Phosphatidylserine Exposure and Microparticles Release. Blood, 2010, 116, 5185-5185.	1.4	1
59	Neutrophils Clearance by Endothelial Cells Regulates Homeostasis and Coagulation Blood, 2010, 116, 3782-3782.	1.4	0
60	Lactadherin as a Probe for Phosphatidylserine Exposure and as An Anticoagulant for the Procoagulant Activity in the Study of Stored Platelets Blood, 2009, 114, 3150-3150.	1.4	0
61	Procoagulant Function and Phosphatidylserine Distribution on Immortalized Acute Promyelocytic Leukemia Cells Blood, 2007, 110, 2155-2155.	1.4	0
62	Lactadherin detects early phosphatidylserine exposure on immortalized leukemia cells undergoing programmed cell death. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2006, 69A, 1193-1201.	1.5	97
63	Regulated Phosphatidylserine Exposure on Platelets Mediates Fibrin Formation in Hemostasis and Thrombosis Blood, 2005, 106, 1645-1645.	1.4	1
64	Lactadherin binds selectively to membranes containing phosphatidyl-l-serine and increased curvature. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1667, 82-90.	2.6	172
65	Reversible Exposure of Phosphatidylserine on Thrombin-Stimulated Platelets Detected by Binding of Lactadherin Blood, 2004, 104, 3537-3537.	1.4	0
66	Lactadherin inhibits enzyme complexes of blood coagulation by competing for phospholipid-binding sites. Blood, 2003, 101, 2628-2636.	1.4	163