
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3072955/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isolation and Purification of Versican and Analysis of Versican. Methods in Molecular Biology, 2022, 2303, 559-578.	0.9	2
2	The Link module of human TSG-6 (Link_TSG6) promotes wound healing, suppresses inflammation and improves glandular function in mouse models of Dry Eye Disease. Ocular Surface, 2022, 24, 40-50.	4.4	9
3	Mast cell infiltration of the choroid and protease release are early events in age-related macular degeneration associated with genetic risk at both chromosomes 1q32 and 10q26. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118510119.	7.1	8
4	IL-13 is a driver of COVID-19 severity. JCI Insight, 2021, 6, .	5.0	80
5	A Personal Tribute to Robert B. Sim with Reflections on Our Work Together on Factor H. Viruses, 2021, 13, 1256.	3.3	0
6	Hyaluronan deposition in islets may precede and direct the location of islet immune-cell infiltrates. Diabetologia, 2020, 63, 549-560.	6.3	9
7	The microvascular extracellular matrix in brains with Alzheimer's disease neuropathologic change (ADNC) and cerebral amyloid angiopathy (CAA). Fluids and Barriers of the CNS, 2020, 17, 60.	5.0	16
8	Control of Complement Activation by the Long Pentraxin PTX3: Implications in Age-Related Macular Degeneration. Frontiers in Pharmacology, 2020, 11, 591908.	3.5	11
9	Association of plasma trace element levels with neovascular age-related macular degeneration. Experimental Eye Research, 2020, 201, 108324.	2.6	8
10	Inter-α-inhibitor heavy chain-1 has an integrin-like 3D structure mediating immune regulatory activities and matrix stabilization during ovulation. Journal of Biological Chemistry, 2020, 295, 5278-5291.	3.4	18
11	Enhanced avidin binding to lipid bilayers using PDP-PE lipids with PEG-biotin linkers. Nanoscale Advances, 2020, 2, 1625-1633.	4.6	4
12	The Inter-α-Trypsin Inhibitor Family: Versatile Molecules in Biology and Pathology. Journal of Histochemistry and Cytochemistry, 2020, 68, 907-927.	2.5	58
13	Defective lung function following influenza virus is due to prolonged, reversible hyaluronan synthesis. Matrix Biology, 2019, 80, 14-28.	3.6	100
14	Hyaluronan Accelerates Intestinal Mucosal Healing through Interaction with TSG-6. Cells, 2019, 8, 1074.	4.1	11
15	TNF-Stimulated Gene-6 Is a Key Regulator in Switching Stemness and Biological Properties of Mesenchymal Stem Cells. Stem Cells, 2019, 37, 973-987.	3.2	36
16	Increased Hyaluronan and TSG-6 in Association with Neuropathologic Changes of Alzheimer's Disease. Journal of Alzheimer's Disease, 2019, 67, 91-102.	2.6	33
17	Oocyte-specific ablation of N- and O-glycans alters cumulus cell signalling and extracellular matrix composition. Reproduction, Fertility and Development, 2019, 31, 529.	0.4	13
18	TSG-6: A multifunctional protein with anti-inflammatory and tissue-protective properties. Matrix Biology, 2019, 78-79, 60-83.	3.6	194

#	Article	IF	CITATIONS
19	C-reactive protein and pentraxin-3 binding of factor H-like protein 1 differs from complement factor H: implications for retinal inflammation. Scientific Reports, 2018, 8, 1643.	3.3	27
20	Glycosaminoglycans in extracellular matrix organisation: are concepts from soft matter physics key to understanding the formation of perineuronal nets?. Current Opinion in Structural Biology, 2018, 50, 65-74.	5.7	54
21	A Novel Choroidal Endothelial Cell Line Has a Decreased Affinity for the Age-Related Macular Degeneration–Associated Complement Factor H Variant 402H. , 2018, 59, 722.		18
22	Growth Differentiation Factor 5-Mediated Enhancement of Chondrocyte Phenotype Is Inhibited by Heparin: Implications for the Use of Heparin in the Clinic and in Tissue Engineering Applications. Tissue Engineering - Part A, 2017, 23, 275-292.	3.1	25
23	Complement factor H in host defense and immune evasion. Cellular and Molecular Life Sciences, 2017, 74, 1605-1624.	5.4	148
24	Ultra-low friction between boundary layers of hyaluronan-phosphatidylcholine complexes. Acta Biomaterialia, 2017, 59, 283-292.	8.3	56
25	The Good the Bad and the Ugly of Glycosaminoglycans in Tissue Engineering Applications. Pharmaceuticals, 2017, 10, 54.	3.8	30
26	Binding of Hyaluronan to the Native Lymphatic Vessel Endothelial Receptor LYVE-1 Is Critically Dependent on Receptor Clustering and Hyaluronan Organization. Journal of Biological Chemistry, 2016, 291, 8014-8030.	3.4	87
27	The Anti-inflammatory Protein TSG-6 Regulates Chemokine Function by Inhibiting Chemokine/Glycosaminoglycan Interactions. Journal of Biological Chemistry, 2016, 291, 12627-12640.	3.4	88
28	Tumor Necrosis Factor-stimulated Gene-6 (TSC-6) Is Constitutively Expressed in Adult Central Nervous System (CNS) and Associated with Astrocyte-mediated Glial Scar Formation following Spinal Cord Injury. Journal of Biological Chemistry, 2016, 291, 19939-19952.	3.4	55
29	Homodimerization of the Lymph Vessel Endothelial Receptor LYVE-1 through a Redox-labile Disulfide Is Critical for Hyaluronan Binding in Lymphatic Endothelium. Journal of Biological Chemistry, 2016, 291, 25004-25018.	3.4	28
30	G1 Domain of Versican Regulates Hyaluronan Organization and the Phenotype of Cultured Human Dermal Fibroblasts. Journal of Histochemistry and Cytochemistry, 2016, 64, 353-363.	2.5	22
31	Nuclear Magnetic Resonance Insight into the Multiple Glycosaminoglycan Binding Modes of the Link Module from Human TSG-6. Biochemistry, 2016, 55, 262-276.	2.5	20
32	Age and Smoking Related Changes in Metal Ion Levels in Human Lens: Implications for Cataract Formation. PLoS ONE, 2016, 11, e0147576.	2.5	32
33	Metal Ion-dependent Heavy Chain Transfer Activity of TSG-6 Mediates Assembly of the Cumulus-Oocyte Matrix. Journal of Biological Chemistry, 2015, 290, 28708-28723.	3.4	46
34	Complementing the Sugar Code: Role of GAGs and Sialic Acid in Complement Regulation. Frontiers in Immunology, 2015, 6, 25.	4.8	74
35	Molecular analysis of the cumulus matrix: insights from mice with O-glycan-deficient oocytes. Reproduction, 2015, 149, 533-543.	2.6	17
36	Supramolecular synergy in the boundary lubrication of synovial joints. Nature Communications, 2015, 6, 6497.	12.8	254

#	Article	IF	CITATIONS
37	Age-related macular degeneration and the role of the complement system. Molecular Immunology, 2015, 67, 43-50.	2.2	120
38	lsolation and Purification of Versican and Analysis of Versican Proteolysis. Methods in Molecular Biology, 2015, 1229, 587-604.	0.9	16
39	Inhibition of hyaluronan synthesis restores immune tolerance during autoimmune insulitis. Journal of Clinical Investigation, 2015, 125, 3928-3940.	8.2	76
40	196â€Tsg-6: A Novel Regulator Of VSMC Differentiation and Calcification?. Heart, 2014, 100, A108.2-A108.	2.9	0
41	The Role of Complement in Age-Related Macular Degeneration: Heparan Sulphate, a ZIP Code for Complement Factor H?. Journal of Innate Immunity, 2014, 6, 407-416.	3.8	60
42	A Refined Model for the TSG-6 Link Module in Complex with Hyaluronan. Journal of Biological Chemistry, 2014, 289, 5619-5634.	3.4	46
43	TSG-6 Inhibits Neutrophil Migration via Direct Interaction with the Chemokine CXCL8. Journal of Immunology, 2014, 192, 2177-2185.	0.8	147
44	Age-Dependent Changes in Heparan Sulfate in Human Bruch's Membrane: Implications for Age-Related Macular Degeneration. , 2014, 55, 5370.		60
45	Hyaluronan and Hyaluronan-Binding Proteins Accumulate in Both Human Type 1 Diabetic Islets and Lymphoid Tissues and Associate With Inflammatory Cells in Insulitis. Diabetes, 2014, 63, 2727-2743.	0.6	98
46	New strategies for cartilage regeneration exploiting selected glycosaminoglycans to enhance cell fate determination. Biochemical Society Transactions, 2014, 42, 703-709.	3.4	17
47	Incorporation of Pentraxin 3 into Hyaluronan Matrices Is Tightly Regulated and Promotes Matrix Cross-linking. Journal of Biological Chemistry, 2014, 289, 30481-30498.	3.4	67
48	Age-related changes to glycosaminoglycans in human Bruch's membrane may contribute to immune dysregulation in AMD. Molecular Immunology, 2013, 56, 280.	2.2	0
49	Inter-α-inhibitor Impairs TSG-6-induced Hyaluronan Cross-linking. Journal of Biological Chemistry, 2013, 288, 29642-29653.	3.4	60
50	The Proteoglycan Glycomatrix: A Sugar Microenvironment Essential for Complement Regulation. Frontiers in Immunology, 2013, 4, 412.	4.8	33
51	Immobilization of Heparan Sulfate on Electrospun Meshes to Support Embryonic Stem Cell Culture and Differentiation *. Journal of Biological Chemistry, 2013, 288, 5530-5538.	3.4	41
52	Tissue-Specific Host Recognition by Complement Factor H Is Mediated by Differential Activities of Its Glycosaminoglycan-Binding Regions. Journal of Immunology, 2013, 190, 2049-2057.	0.8	133
53	Sulfation of the Bikunin Chondroitin Sulfate Chain Determines Heavy Chain·Hyaluronan Complex Formation. Journal of Biological Chemistry, 2013, 288, 22930-22941.	3.4	36
54	Long Pentraxin 3/Tumor Necrosis Factor-Stimulated Gene-6 Interaction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 696-703.	2.4	69

#	Article	IF	CITATIONS
55	Monocyte-to-Macrophage Differentiation. Journal of Biological Chemistry, 2012, 287, 14122-14135.	3.4	81
56	Hyaluronan and Hyaluronan Binding Proteins Are Normal Components of Mouse Pancreatic Islets and Are Differentially Expressed by Islet Endocrine Cell Types. Journal of Histochemistry and Cytochemistry, 2012, 60, 749-760.	2.5	39
57	Constitutive Expression of Inter-α-inhibitor (IαI) Family Proteins and Tumor Necrosis Factor-stimulated Gene-6 (TSG-6) by Human Amniotic Membrane Epithelial and Stromal Cells Supporting Formation of the Heavy Chain-Hyaluronan (HC-HA) Complex. Journal of Biological Chemistry, 2012, 287, 12433-12444.	3.4	58
58	Mapping the Differential Distribution of Proteoglycan Core Proteins in the Adult Human Retina, Choroid, and Sclera. , 2012, 53, 7528.		80
59	Normal and Shear Interactions between Hyaluronan–Aggrecan Complexes Mimicking Possible Boundary Lubricants in Articular Cartilage in Synovial Joints. Biomacromolecules, 2012, 13, 3823-3832.	5.4	72
60	Articular Cartilage Proteoglycans As Boundary Lubricants: Structure and Frictional Interaction of Surface-Attached Hyaluronan and Hyaluronan–Aggrecan Complexes. Biomacromolecules, 2011, 12, 3432-3443.	5.4	120
61	Implication of the oligomeric state of the N-terminal PTX3 domain in cumulus matrix assembly. Matrix Biology, 2011, 30, 330-337.	3.6	40
62	Mapping the Differential Distribution of Glycosaminoglycans in the Adult Human Retina, Choroid, and Sclera. , 2011, 52, 6511.		103
63	Hyaluronan, TSC-6, and Inter-α-Inhibitor in Periprosthetic Breast Capsules: Reduced Levels of Free Hyaluronan and TSC-6 Expression in Contracted Capsules. Aesthetic Surgery Journal, 2011, 31, 47-55.	1.6	16
64	Characterization of hyaluronan and TSCâ€6 in skin scarring: differential distribution in keloid scars, normal scars and unscarred skin. Journal of the European Academy of Dermatology and Venereology, 2011, 25, 317-327.	2.4	64
65	TSGâ€6 inhibits osteoclast activity via an autocrine mechanism and is functionally synergistic with osteoprotegerin. Arthritis and Rheumatism, 2011, 63, 1034-1043.	6.7	46
66	Understanding the molecular basis of age-related macular degeneration and how the identification of new mechanisms may aid the development of novel therapies. Expert Review of Ophthalmology, 2011, 6, 123-128.	0.6	11
67	The Inflammation-associated Protein TSC-6 Cross-links Hyaluronan via Hyaluronan-induced TSC-6 Oligomers. Journal of Biological Chemistry, 2011, 286, 25675-25686.	3.4	119
68	Transglutaminase-2: a new endostatin partner in the extracellular matrix of endothelial cells. Biochemical Journal, 2010, 427, 467-475.	3.7	47
69	Complement factor H and age-related macular degeneration: the role of glycosaminoglycan recognition in disease pathology. Biochemical Society Transactions, 2010, 38, 1342-1348.	3.4	83
70	Analysis of CD44-Hyaluronan Interactions in an Artificial Membrane System. Journal of Biological Chemistry, 2010, 285, 30170-30180.	3.4	187
71	The Angiogenic Inhibitor Long Pentraxin PTX3 Forms an Asymmetric Octamer with Two Binding Sites for FGF2. Journal of Biological Chemistry, 2010, 285, 17681-17692.	3.4	106
72	Impaired Binding of the Age-related Macular Degeneration-associated Complement Factor H 402H Allotype to Bruch's Membrane in Human Retina. Journal of Biological Chemistry, 2010, 285, 30192-30202.	3.4	159

#	Article	IF	CITATIONS
73	Shiga Toxin Activates Complement and Binds Factor H: Evidence for an Active Role of Complement in Hemolytic Uremic Syndrome. Journal of Immunology, 2009, 182, 6394-6400.	0.8	179
74	Biochemical Characterization and Function of Complexes Formed by Hyaluronan and the Heavy Chains of Inter-α-inhibitor (HC·HA) Purified from Extracts of Human Amniotic Membrane. Journal of Biological Chemistry, 2009, 284, 20136-20146.	3.4	109
75	Coregulation in human leukocytes of the long pentraxin PTX3 and TSG-6. Journal of Leukocyte Biology, 2009, 86, 123-132.	3.3	77
76	Hyaluronan Fragments/CD44 Mediate Oxidative Stress–Induced MUC5B Up-Regulation in Airway Epithelium. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 277-285.	2.9	71
77	Development of a microtiter plate-based glycosaminoglycan array for the investigation of glycosaminoglycan-protein interactions. Glycobiology, 2009, 19, 1537-1546.	2.5	37
78	Short leucine-rich glycoproteins of the extracellular matrix display diverse patterns of complement interaction and activation. Molecular Immunology, 2009, 46, 830-839.	2.2	118
79	Surface Gradient of Functional Heparin. Advanced Materials, 2008, 20, 1166-1169.	21.0	70
80	Superficial zone chondrocytes in normal and osteoarthritic human articular cartilages synthesize novel truncated forms of inter-alpha-trypsin inhibitor heavy chains which are attached to a chondroitin sulfate proteoglycan other than bikunin. Osteoarthritis and Cartilage, 2008, 16, 1343-1355.	1.3	26
81	TSG-6 binds via its CUB_C domain to the cell-binding domain of fibronectin and increases fibronectin matrix assembly. Matrix Biology, 2008, 27, 201-210.	3.6	34
82	A bug in CUB's clothing: similarity between clostridial CBMs and complement CUBs. Trends in Microbiology, 2008, 16, 407-408.	7.7	2
83	TSG-6 Regulates Bone Remodeling through Inhibition of Osteoblastogenesis and Osteoclast Activation. Journal of Biological Chemistry, 2008, 283, 25952-25962.	3.4	43
84	Synthesis of Tumor Necrosis Factor Alpha-Induced Protein 6 in Porcine Preovulatory Follicles: A Study with A38 Antibody1. Biology of Reproduction, 2008, 78, 903-909.	2.7	18
85	Hyaluronan Binding to Link Module of TSG-6 and to G1 Domain of Aggrecan Is Differently Regulated by pH. Journal of Biological Chemistry, 2008, 283, 32294-32301.	3.4	28
86	Structural Characterization of PTX3 Disulfide Bond Network and Its Multimeric Status in Cumulus Matrix Organization. Journal of Biological Chemistry, 2008, 283, 10147-10161.	3.4	121
87	Determining the Molecular Basis for the pH-dependent Interaction between the Link Module of Human TSG-6 and Hyaluronan. Journal of Biological Chemistry, 2007, 282, 12976-12988.	3.4	31
88	The Factor H Variant Associated with Age-related Macular Degeneration (His-384) and the Non-disease-associated Form Bind Differentially to C-reactive Protein, Fibromodulin, DNA, and Necrotic Cells. Journal of Biological Chemistry, 2007, 282, 10894-10900.	3.4	126
89	TSG-6 Potentiates the Antitissue Kallikrein Activity of Inter–α-inhibitor through Bikunin Release. American Journal of Respiratory Cell and Molecular Biology, 2007, 36, 20-31.	2.9	64
90	Associative and Structural Properties of the Region of Complement Factor H Encompassing the Tyr402His Disease-related Polymorphism and its Interactions with Heparin. Journal of Molecular Biology, 2007, 368, 564-581.	4.2	44

#	Article	IF	CITATIONS
91	Plasticity of the TSG-6 HA-binding Loop and Mobility in the TSG-6-HA Complex Revealed by NMR and X-ray Crystallography. Journal of Molecular Biology, 2007, 371, 669-684.	4.2	24
92	Towards a structural basis for complement factor H linked age-related macular degeneration. Molecular Immunology, 2007, 44, 3930-3931.	2.2	1
93	Structural basis for complement factor H–linked age-related macular degeneration. Journal of Experimental Medicine, 2007, 204, 2277-2283.	8.5	168
94	Using Molecular Dynamics Simulations To Provide New Insights into Protein Structure on the Nanosecond Timescale:  Comparison with Experimental Data and Biological Inferences for the Hyaluronan-Binding Link Module of TSG-6. Journal of Chemical Theory and Computation, 2007, 3, 1-16.	5.3	16
95	Expression, purification, cocrystallization and preliminary crystallographic analysis of sucrose octasulfate/human complement regulator factor H SCRs 6–8. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 480-483.	0.7	14
96	Fourier transform mass spectrometry to monitor hyaluronan-protein interactions: use of hydrogen/deuterium amide exchange. Rapid Communications in Mass Spectrometry, 2007, 21, 121-131.	1.5	14
97	Structures of the Cd44–hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction. Nature Structural and Molecular Biology, 2007, 14, 234-239.	8.2	314
98	Experimental evidence for all-or-none cooperative interactions between the G1-domain of versican and multivalent hyaluronan oligosaccharides. Matrix Biology, 2006, 25, 14-19.	3.6	13
99	Characterization of hyaluronan cable structure and function in renal proximal tubular epithelial cells. Kidney International, 2006, 70, 1287-1295.	5.2	92
100	Versican-thrombospondin-1 binding in vitro and colocalization in microfibrils induced by inflammation on vascular smooth muscle cells. Journal of Cell Science, 2006, 119, 4499-4509.	2.0	51
101	Overexpression of Hyaluronan Synthase 2 Alters Hyaluronan Distribution and Function in Proximal Tubular Epithelial Cells. Journal of the American Society of Nephrology: JASN, 2006, 17, 1553-1567.	6.1	48
102	His-384 Allotypic Variant of Factor H Associated with Age-related Macular Degeneration Has Different Heparin Binding Properties from the Non-disease-associated Form. Journal of Biological Chemistry, 2006, 281, 24713-24720.	3.4	161
103	Induction of versicanâ€ŧhrombospondinâ€1 complexes during endoplasmic reticulum stress on vascular smooth muscle cells. FASEB Journal, 2006, 20, A516.	0.5	0
104	TNF?-stimulated gene product (TSG-6) and its binding protein, I?I, in the human intervertebral disc: new molecules for the disc. European Spine Journal, 2005, 14, 36-42.	2.2	32
105	The N-terminal Module of Thrombospondin-1 Interacts with the Link Domain of TSG-6 and Enhances Its Covalent Association with the Heavy Chains of Inter-α-trypsin Inhibitor. Journal of Biological Chemistry, 2005, 280, 30899-30908.	3.4	37
106	Preparation and application of biologically active fluorescent hyaluronan oligosaccharides. Glycobiology, 2005, 15, 303-312.	2.5	37
107	Hyaluronan in Immune Processes. Advances in Experimental Medicine and Biology, 2005, 564, 57-69.	1.6	2
108	Expression and Purification of Functionally Active Hyaluronan-binding Domains from Human Cartilage Link Protein, Aggrecan and Versican. Journal of Biological Chemistry, 2005, 280, 5435-5448.	3.4	82

#	Article	IF	CITATIONS
109	Towards a Structure for a TSG-6·Hyaluronan Complex by Modeling and NMR Spectroscopy. Journal of Biological Chemistry, 2005, 280, 18189-18201.	3.4	69
110	Characterization of Complexes Formed between TSC-6 andInter-α-inhibitor That Act as Intermediates in the Covalent Transfer ofHeavy Chains ontoHyaluronan*. Journal of Biological Chemistry, 2005, 280, 25674-25686.	3.4	150
111	Characterization of the Interaction between Tumor Necrosis Factor-stimulated Gene-6 and Heparin. Journal of Biological Chemistry, 2005, 280, 27044-27055.	3.4	79
112	Hyaluronan cross-linking: a protective mechanism in inflammation?. Trends in Immunology, 2005, 26, 637-643.	6.8	290
113	Structural and Functional Diversity of Hyaluronan-Binding Proteins. , 2004, , 189-204.		9
114	Use of 15N-NMR to resolve molecular details in isotopically-enriched carbohydrates: sequence-specific observations in hyaluronan oligomers up to decasaccharides. Glycobiology, 2004, 14, 999-1009.	2.5	56
115	Specificity of the Tumor Necrosis Factor-induced Protein 6-mediated Heavy Chain Transfer from Inter-α-trypsin Inhibitor to Hyaluronan. Journal of Biological Chemistry, 2004, 279, 11119-11128.	3.4	61
116	Hyaluronan: a simple polysaccharide with structural plasticity and functional diversity. International Journal of Experimental Pathology, 2004, 85, A52-A53.	1.3	0
117	ADAMTS-4 activity on a proteoglycan vs. a polypeptide is controlled by the ancillary domains. International Journal of Experimental Pathology, 2004, 85, A66-A67.	1.3	Ο
118	Structural and functional studies on hyaluronan-protein aggregates produced in vitro. International Journal of Experimental Pathology, 2004, 85, A74-A75.	1.3	0
119	Analysis of CD44 hyaluronan-binding domain mutants by NMR. International Journal of Experimental Pathology, 2004, 85, A77-A77.	1.3	0
120	Inhibitory Effects of TSG-6 Link Module on Leukocyte–Endothelial Cell InteractionsIn VitroandIn Vivo. Microcirculation, 2004, 11, 615-624.	1.8	51
121	A method for the non-covalent immobilization of heparin to surfaces. Analytical Biochemistry, 2004, 330, 123-129.	2.4	48
122	PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization. Development (Cambridge), 2004, 131, 1577-1586.	2.5	385
123	TSC-6 Modulates the Interaction between Hyaluronan and Cell Surface CD44. Journal of Biological Chemistry, 2004, 279, 25745-25754.	3.4	149
124	Structure of the Regulatory Hyaluronan Binding Domain in the Inflammatory Leukocyte Homing Receptor CD44. Molecular Cell, 2004, 13, 483-496.	9.7	228
125	Selective inhibition of ADAMTS-1, -4 and -5 by catechin gallate esters. FEBS Journal, 2003, 270, 2394-2403.	0.2	83
126	TSG-6: a multifunctional protein associated with inflammation. Journal of Cell Science, 2003, 116, 1863-1873.	2.0	331

#	Article	IF	CITATIONS
127	The Link Module from Ovulation- and Inflammation-associated Protein TSG-6 Changes Conformation on Hyaluronan Binding. Journal of Biological Chemistry, 2003, 278, 49261-49270.	3.4	81
128	Impaired cumulus mucification and female sterility in tumor necrosis factor-induced protein-6 deficient mice. Development (Cambridge), 2003, 130, 2253-2261.	2.5	342
129	Decreased Expression of Tumor Necrosis Factor-α-Stimulated Gene 6 in Cumulus Cells of the Cyclooxygenase-2 and EP2 Null Mice. Endocrinology, 2003, 144, 1008-1019.	2.8	135
130	Identification and Characterization of a Novel Interaction between Pulmonary Surfactant Protein D and Decorin. Journal of Biological Chemistry, 2003, 278, 25678-25687.	3.4	51
131	Disrupted Function of Tumor Necrosis Factor-α-Stimulated Gene 6 Blocks Cumulus Cell-Oocyte Complex Expansion. Endocrinology, 2003, 144, 4376-4384.	2.8	134
132	Hyaluronan-binding Proteins: Tying Up the Giant. Journal of Biological Chemistry, 2002, 277, 4585-4588.	3.4	479
133	A Novel Allelic Variant of the Human TSG-6 Gene Encoding an Amino Acid Difference in the CUB Module. Journal of Biological Chemistry, 2002, 277, 15354-15362.	3.4	51
134	Hyaluronan Binding Properties of a CD44 Chimera Containing the Link Module of TSG-6. Journal of Biological Chemistry, 2002, 277, 26600-26608.	3.4	67
135	The Link Module from Human TSG-6 Inhibits Neutrophil Migration in a Hyaluronan- and Inter-α-inhibitor-independent Manner. Journal of Biological Chemistry, 2002, 277, 51068-51076.	3.4	109
136	Hyaluronan and Homeostasis: A Balancing Act. Journal of Biological Chemistry, 2002, 277, 4581-4584.	3.4	407
137	Induction of the Hyaluronic Acid-Binding Protein, Tumor Necrosis Factor-Stimulated Gene-6, in Cervical Smooth Muscle Cells by Tumor Necrosis Factor-α and Prostaglandin E2. American Journal of Pathology, 2002, 160, 1495-1502.	3.8	66
138	GETTING TO GRIPS WITH HA-PROTEIN INTERACTIONS. , 2002, , 161-172.		5
139	Two Distinct Populations of Tumor Necrosis Factor-Stimulated Gene-6 Protein in the Extracellular Matrix of Expanded Mouse Cumulus Cell–Oocyte Complexes. Archives of Biochemistry and Biophysics, 2001, 394, 173-181.	3.0	114
140	Up-regulation and differential expression of the hyaluronan-binding protein TSG-6 in cartilage and synovium in rheumatoid arthritis and osteoarthritis. Osteoarthritis and Cartilage, 2001, 9, 42-48.	1.3	105
141	Hyaluronan: polysaccharide chaos to protein organisation. Current Opinion in Structural Biology, 2001, 11, 617-622.	5.7	171
142	TSG-6 Is Concentrated in the Extracellular Matrix of Mouse Cumulus Oocyte Complexes Through Hyaluronan and Inter-Alpha-Inhibitor Binding1. Biology of Reproduction, 2001, 65, 301-308.	2.7	87
143	Mapping the Hyaluronan-binding Site on the Link Module from Human Tumor Necrosis Factor-stimulated Gene-6 by Site-directed Mutagenesis. Journal of Biological Chemistry, 2001, 276, 22764-22771.	3.4	81
144	Novel methods for the preparation and characterization of hyaluronan oligosaccharides of defined length. Glycobiology, 2001, 11, 1025-1033.	2.5	99

#	Article	IF	CITATIONS
145	Localization and characterization of the hyaluronan-binding site on the Link module from human TSG-6. Structure, 2000, 8, 763-774.	3.3	95
146	STRUCTURAL REGULATION OF HYALURONAN BINDING TO PROTEINS. Biochemical Society Transactions, 1999, 27, A11-A11.	3.4	0
147	TSC-6 interacts with hyaluronan and aggrecan in a pH-dependent manner via a common functional element: implications for its regulation in inflamed cartilage. FEBS Letters, 1998, 428, 171-176.	2.8	58
148	Characterization of a Functional Hyaluronan-Binding Domain from the Human CD44 Molecule Expressed inEscherichia coli. Protein Expression and Purification, 1998, 14, 371-381.	1.3	65
149	Identification of CD44 Residues Important for Hyaluronan Binding and Delineation of the Binding Site. Journal of Biological Chemistry, 1998, 273, 338-343.	3.4	158
150	Method for Quantitative Refolding of the Link Module from Human TSG-6. Protein Expression and Purification, 1997, 9, 315-318.	1.3	27
151	Overlapping sites on the Link module of human TSC-6 mediate binding to hyaluronan and chondroitin-4-sulphate. FEBS Letters, 1997, 410, 413-417.	2.8	66
152	The SH2 domain from the tyrosine kinase Fyn in complex with a phosphotyrosyl peptide reveals insights into domain stability and binding specificity. Structure, 1997, 5, 1313-1323.	3.3	44
153	The C1q and collectin binding site within C1 q receptor (cell surface calreticulin). Immunopharmacology, 1997, 38, 73-80.	2.0	87
154	Overexpression, Purification, and Refolding of Link Module from Human TSG-6 inEscherichia coli:Effect of Temperature, Media, and Mutagenesis on Lysine Misincorporation at Arginine AGA Codons. Protein Expression and Purification, 1996, 8, 1-16.	1.3	51
155	Solution Structure of the Link Module: A Hyaluronan-Binding Domain Involved in Extracellular Matrix Stability and Cell Migration. Cell, 1996, 86, 767-775.	28.9	293
156	The C-type carbohydrate recognition domain (CRD) superfamily. Biochemical Society Transactions, 1994, 22, 83-88.	3.4	143
157	Characterization of xenopus laevis complement factor I structure—conservation of modular structure except for an unusual insert not present in human factor I. Molecular Immunology, 1993, 30, 1249-1256.	2.2	46
158	Biotinyl analogues of amylin as biologically active probes for amylin/CGRP receptor recognition. FEBS Letters, 1992, 296, 123-127.	2.8	2
159	Secondary structure of the complement control protein module by two-dimensional proton NMR. Biochemistry, 1991, 30, 997-1004.	2.5	102
160	Three-dimensional structure of a complement control protein module in solution. Journal of Molecular Biology, 1991, 219, 717-725.	4.2	240
161	Ig-binding domains of C1q. Trends in Immunology, 1990, 11, 387-388.	7.5	13
162	Structure-function relationships of the complement components. Trends in Immunology, 1989, 10, 177-180.	7.5	325

#	Article	IF	CITATIONS
163	Amylin and the amylin gene: structure, function and relationship to islet amyloid and to diabetes mellitus. Biochimica Et Biophysica Acta - Molecular Cell Research, 1989, 1014, 247-258.	4.1	134
164	The amylin superfamily: A novel grouping of biologically active polypeptides related to the insulin A-chain. Progress in Growth Factor Research, 1989, 1, 99-105.	1.6	22
165	Molecular and functional characterization of amylin, a peptide associated with type 2 diabetes mellitus Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 9662-9666.	7.1	139
166	Sequence polymorphism of human complement factor H. Immunogenetics, 1988, 27, 211-214.	2.4	57
167	Assignment of complement components C4 binding protein (C4BP) and factor H (FH) to human chromosome 1q, using cDNA probes. Annals of Human Genetics, 1988, 52, 117-122.	0.8	21
168	mRNA coding for a truncated form of human complement factor H. Biochemical Society Transactions, 1987, 15, 651-652.	3.4	13
169	Structure and specificity of complement receptors. Immunology Letters, 1987, 14, 183-190.	2.5	25
170	Sequence analysis of a cDNA clone encoding the C-terminal end of human complement factor H. Bioscience Reports, 1987, 7, 201-207.	2.4	7
171	Inhibitory effect of Zn2+ ions on the degradation of the complement activation fragment C3b. Biochemical Society Transactions, 1986, 14, 73-74.	3.4	12
172	Partial characterization of human complement factor H by protein and cDNA sequencing: Homology with other complement and non-complement proteins. Bioscience Reports, 1986, 6, 65-72.	2.4	31