Henk A Marquering

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3072641/publications.pdf

Version: 2024-02-01

242 papers

15,116 citations

49 h-index

41344

20961 115 g-index

250 all docs

250 docs citations

times ranked

250

13477 citing authors

#	Article	IF	CITATIONS
1	A Randomized Trial of Intraarterial Treatment for Acute Ischemic Stroke. New England Journal of Medicine, 2015, 372, 11-20.	27.0	5,468
2	The Heidelberg Bleeding Classification. Stroke, 2015, 46, 2981-2986.	2.0	755
3	Platelet transfusion versus standard care after acute stroke due to spontaneous cerebral haemorrhage associated with antiplatelet therapy (PATCH): a randomised, open-label, phase 3 trial. Lancet, The, 2016, 387, 2605-2613.	13.7	587
4	Losartan reduces aortic dilatation rate in adults with Marfan syndrome: a randomized controlled trial. European Heart Journal, 2013, 34, 3491-3500.	2.2	332
5	Imaging features and safety and efficacy of endovascular stroke treatment: a meta-analysis of individual patient-level data. Lancet Neurology, The, 2018, 17, 895-904.	10.2	281
6	Penumbral imaging and functional outcome in patients with anterior circulation ischaemic stroke treated with endovascular thrombectomy versus medical therapy: a meta-analysis of individual patient-level data. Lancet Neurology, The, 2019, 18, 46-55.	10.2	276
7	Three-dimensional sensitivity kernels for finite-frequency traveltimes: the banana-doughnut paradox. Geophysical Journal International, 1999, 137, 805-815.	2.4	272
8	Collateral Status on Baseline Computed Tomographic Angiography and Intra-Arterial Treatment Effect in Patients With Proximal Anterior Circulation Stroke. Stroke, 2016, 47, 768-776.	2.0	230
9	Time to Reperfusion and Treatment Effect for Acute Ischemic Stroke. JAMA Neurology, 2016, 73, 190.	9.0	220
10	Effect of general anaesthesia on functional outcome in patients with anterior circulation ischaemic stroke having endovascular thrombectomy versus standard care: a meta-analysis of individual patient data. Lancet Neurology, The, 2018, 17, 47-53.	10.2	205
11	Volumetric arterial wall shear stress calculation based on cine phase contrast MRI. Journal of Magnetic Resonance Imaging, 2015, 41, 505-516.	3.4	128
12	Analyses of thrombi in acute ischemic stroke: A consensus statement on current knowledge and future directions. International Journal of Stroke, 2017, 12, 606-614.	5.9	128
13	Three-dimensional waveform sensitivity kernels. Geophysical Journal International, 1998, 132, 521-534.	2.4	125
14	Predicting Outcome of Endovascular Treatment for Acute Ischemic Stroke: Potential Value of Machine Learning Algorithms. Frontiers in Neurology, 2018, 9, 784.	2.4	107
15	Baseline Blood Pressure Effect on the Benefit and Safety of Intra-Arterial Treatment in MR CLEAN (Multicenter Randomized Clinical Trial of Endovascular Treatment of Acute Ischemic Stroke in the) Tj $ETQq1\ 1\ 0.7$	78 43 014 rg	gBTI/ Q verlock
16	A decrease in blood pressure is associated with unfavorable outcome in patients undergoing thrombectomy under general anesthesia. Journal of NeuroInterventional Surgery, 2018, 10, 107-111.	3.3	104
17	Thrombus Permeability Is Associated With Improved Functional Outcome and Recanalization in Patients With Ischemic Stroke. Stroke, 2016, 47, 732-741.	2.0	103
18	Value of Computed Tomographic Perfusion–Based Patient Selection for Intra-Arterial Acute Ischemic Stroke Treatment. Stroke, 2015, 46, 3375-3382.	2.0	101

#	Article	IF	Citations
19	Association of Reperfusion With Brain Edema in Patients With Acute Ischemic Stroke. JAMA Neurology, 2018, 75, 453.	9.0	101
20	Effect of baseline Alberta Stroke Program Early CT Score on safety and efficacy of intra-arterial treatment: a subgroup analysis of a randomised phase 3 trial (MR CLEAN). Lancet Neurology, The, 2016, 15, 685-694.	10.2	100
21	National Institutes of Health Stroke Scale. Stroke, 2020, 51, 282-290.	2.0	95
22	Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2019, 475, 77-83.	2.8	94
23	Association of follow-up infarct volume with functional outcome in acute ischemic stroke: a pooled analysis of seven randomized trials. Journal of NeuroInterventional Surgery, 2018, 10, 1137-1142.	3.3	93
24	Hemorrhagic transformation is associated with poor functional outcome in patients with acute ischemic stroke due to a large vessel occlusion. Journal of NeuroInterventional Surgery, 2019, 11, 464-468.	3.3	93
25	Effect of Interhospital Transfer on Endovascular Treatment for Acute Ischemic Stroke. Stroke, 2019, 50, 923-930.	2.0	87
26	Collateral Circulation and Outcome in Atherosclerotic Versus Cardioembolic Cerebral Large Vessel Occlusion. Stroke, 2019, 50, 3360-3368.	2.0	86
27	Thrombus Imaging Characteristics and Outcomes in Acute Ischemic Stroke Patients Undergoing Endovascular Treatment. Stroke, 2019, 50, 2057-2064.	2.0	85
28	Surface-wave mode coupling for efficient forward modelling and inversion of body-wave phases. Geophysical Journal International, 1995, 120, 186-208.	2.4	83
29	Automated Cerebral Infarct Volume Measurement in Follow-up Noncontrast CT Scans of Patients with Acute Ischemic Stroke. American Journal of Neuroradiology, 2013, 34, 1522-1527.	2.4	82
30	Thresholds for Arterial Wall Inflammation Quantified by 18F-FDG PET Imaging. JACC: Cardiovascular Imaging, 2016, 9, 1198-1207.	5.3	81
31	Shear-wave velocity structure beneath Europe, the northeastern Atlantic and western Asia from waveform inversions including surface-wave mode coupling. Geophysical Journal International, 1996, 127, 283-304.	2.4	80
32	Prevalence of Carotid Web in Patients with Acute Intracranial Stroke Due to Intracranial Large Vessel Occlusion. Radiology, 2018, 286, 1000-1007.	7.3	80
33	Mediation of the Relationship Between Endovascular Therapy and Functional Outcome by Follow-up Infarct Volume in Patients With Acute Ischemic Stroke. JAMA Neurology, 2019, 76, 194.	9.0	77
34	EXOSC3 mutations in pontocerebellar hypoplasia type 1: novel mutations and genotype-phenotype correlations. Orphanet Journal of Rare Diseases, 2014, 9, 23.	2.7	75
35	Comparison of three commonly used CT perfusion software packages in patients with acute ischemic stroke. Journal of NeuroInterventional Surgery, 2019, 11, 1249-1256.	3.3	74
36	Intra-arterial treatment of patients with acute ischemic stroke and internal carotid artery occlusion: a literature review. Journal of NeuroInterventional Surgery, 2015, 7, 8-15.	3.3	73

#	Article	IF	CITATIONS
37	Complex flow patterns in a realâ€size intracranial aneurysm phantom: phase contrast MRI compared with particle image velocimetry and computational fluid dynamics. NMR in Biomedicine, 2012, 25, 14-26.	2.8	71
38	Generalized versus Patient-Specific Inflow Boundary Conditions in Computational Fluid Dynamics Simulations of Cerebral Aneurysmal Hemodynamics. American Journal of Neuroradiology, 2014, 35, 1543-1548.	2.4	69
39	Volumetric and Spatial Accuracy of Computed Tomography Perfusion Estimated Ischemic Core Volume in Patients With Acute Ischemic Stroke. Stroke, 2018, 49, 2368-2375.	2.0	69
40	Thrombus Migration Paradox in Patients With Acute Ischemic Stroke. Stroke, 2019, 50, 3156-3163.	2.0	69
41	Increased aortic tortuosity indicates a more severe aortic phenotype in adults with Marfan syndrome. International Journal of Cardiology, 2015, 194, 7-12.	1.7	68
42	Wall shear stress estimated with phase contrast MRI in an in vitro and in vivo intracranial aneurysm. Journal of Magnetic Resonance Imaging, 2013, 38, 876-884.	3.4	65
43	Data-efficient deep learning of radiological image data for outcome prediction after endovascular treatment of patients with acute ischemic stroke. Computers in Biology and Medicine, 2019, 115, 103516.	7.0	63
44	Permeable Thrombi Are Associated With Higher Intravenous Recombinant Tissue-Type Plasminogen Activator Treatment Success in Patients With Acute Ischemic Stroke. Stroke, 2016, 47, 2058-2065.	2.0	61
45	Prediction of final infarct volume from native CT perfusion and treatment parameters using deep learning. Medical Image Analysis, 2020, 59, 101589.	11.6	58
46	Waveform inversions and the significance of surface-wave mode coupling. Geophysical Journal International, 1996, 124, 258-278.	2.4	56
47	Wall shear stress calculations based on 3D cine phase contrast MRI and computational fluid dynamics: a comparison study in healthy carotid arteries. NMR in Biomedicine, 2014, 27, 826-834.	2.8	56
48	Differences in CT Perfusion Summary Maps for Patients with Acute Ischemic Stroke Generated by 2 Software Packages. American Journal of Neuroradiology, 2012, 33, 2074-2080.	2.4	55
49	Rupture-Associated Changes of Cerebral Aneurysm Geometry: High-Resolution 3D Imaging before and after Rupture. American Journal of Neuroradiology, 2014, 35, 1358-1362.	2.4	52
50	Stroke Etiology and Thrombus Computed Tomography Characteristics in Patients With Acute Ischemic Stroke, 2020, 51, 1727-1735.	2.0	52
51	Functional Imaging of the Foot with Perfusion Angiography in Critical Limb Ischemia. CardioVascular and Interventional Radiology, 2016, 39, 183-189.	2.0	51
52	Machine learning improves prediction of delayed cerebral ischemia in patients with subarachnoid hemorrhage. Journal of NeuroInterventional Surgery, 2019, 11, 497-502.	3.3	51
53	Associations of Ischemic Lesion Volume With Functional Outcome in Patients With Acute Ischemic Stroke. Stroke, 2017, 48, 1233-1240.	2.0	49
54	The Effect of Spatial and Temporal Resolution of Cine Phase Contrast MRI on Wall Shear Stress and Oscillatory Shear Index Assessment. PLoS ONE, 2016, 11, e0163316.	2.5	47

#	Article	IF	CITATIONS
55	Clot Burden Score on Baseline Computerized Tomographic Angiography and Intra-Arterial Treatment Effect in Acute Ischemic Stroke. Stroke, 2016, 47, 2972-2978.	2.0	47
56	Radiological scales predicting delayed cerebral ischemia in subarachnoid hemorrhage: systematic review and meta-analysis. Neuroradiology, 2019, 61, 247-256.	2.2	47
57	Carotid pseudo-occlusion on CTA in patients with acute ischemic stroke: A concerning observation. Clinical Neurology and Neurosurgery, 2013, 115, 1591-1594.	1.4	46
58	Perfusion Angiography of the Foot in Patients with Critical Limb Ischemia: Description of the Technique. CardioVascular and Interventional Radiology, 2015, 38, 201-205.	2.0	46
59	Collateral status and tissue outcome after intra-arterial therapy for patients with acute ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3589-3598.	4.3	46
60	Arterial and Cellular Inflammation in Patients with CKD. Journal of the American Society of Nephrology: JASN, 2017, 28, 1278-1285.	6.1	46
61	Endovascular treatment in older adults with acute ischemic stroke in the MR CLEAN Registry. Neurology, 2020, 95, e131-e139.	1.1	45
62	Early Deterioration After Thrombolysis Plus Aspirin in Acute Stroke. Stroke, 2014, 45, 3080-3082.	2.0	44
63	Automatic Quantification of Subarachnoid Hemorrhage on Noncontrast CT. American Journal of Neuroradiology, 2014, 35, 2279-2286.	2.4	44
64	Value of Quantitative Collateral Scoring on CT Angiography in Patients with Acute Ischemic Stroke. American Journal of Neuroradiology, 2018, 39, 1074-1082.	2.4	44
65	Towards quantitative analysis of coronary CTA. International Journal of Cardiovascular Imaging, 2005, 21, 73-84.	1.5	43
66	Measuring Wall Shear Stress Using Velocity-Encoded MRI. Current Cardiovascular Imaging Reports, 2014, 7, 1.	0.6	43
67	Intracranial Aneurysm Neck Size Overestimation with 3D Rotational Angiography: The Impact on Intra-Aneurysmal Hemodynamics Simulated with Computational Fluid Dynamics. American Journal of Neuroradiology, 2013, 34, 121-128.	2.4	42
68	Clinical and Imaging Determinants of Collateral Status in Patients With Acute Ischemic Stroke in MR CLEAN Trial and Registry. Stroke, 2020, 51, 1493-1502.	2.0	42
69	Associations Between Collateral Status and Thrombus Characteristics and Their Impact in Anterior Circulation Stroke. Stroke, 2018, 49, 391-396.	2.0	41
70	3D Cine Phase-Contrast MRI at 3T in Intracranial Aneurysms Compared with Patient-Specific Computational Fluid Dynamics. American Journal of Neuroradiology, 2013, 34, 1785-1791.	2.4	40
71	Operator Versus Core Lab Adjudication of Reperfusion After Endovascular Treatment of Acute Ischemic Stroke. Stroke, 2018, 49, 2376-2382.	2.0	40
72	Association of Computed Tomography Ischemic Lesion Location With Functional Outcome in Acute Large Vessel Occlusion Ischemic Stroke. Stroke, 2017, 48, 2426-2433.	2.0	39

#	Article	lF	CITATIONS
73	Impact of single phase CT angiography collateral status on functional outcome over time: results from the MR CLEAN Registry. Journal of NeuroInterventional Surgery, 2019, 11, 866-873.	3.3	39
74	Biomechanical Imaging Markers as Predictors of Abdominal Aortic Aneurysm Growth or Rupture: A Systematic Review. European Journal of Vascular and Endovascular Surgery, 2016, 52, 475-486.	1.5	38
75	Endovascular treatment in patients with carotid artery dissection and intracranial occlusion: a systematic review. Neuroradiology, 2017, 59, 641-647.	2.2	37
76	Absence of Cortical Vein Opacification Is Associated with Lack of Intra-arterial Therapy Benefit in Stroke. Radiology, 2018, 286, 643-650.	7.3	36
77	Characteristics of Misclassified CT Perfusion Ischemic Core in Patients with Acute Ischemic Stroke. PLoS ONE, 2015, 10, e0141571.	2.5	36
78	Insufficient slow-flow suppression mimicking aneurysm wall enhancement in magnetic resonance vessel wall imaging: a phantom study. Neurosurgical Focus, 2019, 47, E19.	2.3	36
79	In-Silico Trials for Treatment of Acute Ischemic Stroke. Frontiers in Neurology, 2020, 11, 558125.	2.4	35
80	Vessel wall enhancement of intracranial aneurysms: fact or artifact?. Neurosurgical Focus, 2019, 47, E18.	2.3	35
81	Automated Detection and Grading of Non–Muscle-Invasive Urothelial Cell Carcinoma of the Bladder. American Journal of Pathology, 2020, 190, 1483-1490.	3.8	34
82	Assessment of Recurrent Stroke Risk in Patients With a Carotid Web. JAMA Neurology, 2021, 78, 826.	9.0	34
83	Head movement during CT brain perfusion acquisition of patients with suspected acute ischemic stroke. European Journal of Radiology, 2013, 82, 2334-2341.	2.6	33
84	Automatic aortic root landmark detection in CTA images for preprocedural planning of transcatheter aortic valve implantation. International Journal of Cardiovascular Imaging, 2016, 32, 501-511.	1.5	33
85	Intracerebral Haemorrhage Segmentation in Non-Contrast CT. Scientific Reports, 2019, 9, 17858.	3.3	33
86	Automatic segmentation of cerebral infarcts in follow-up computed tomography images with convolutional neural networks. Journal of NeuroInterventional Surgery, 2020, 12, 848-852.	3.3	33
87	Automatic segmentation of the aortic root in CT angiography of candidate patients for transcatheter aortic valve implantation. Medical and Biological Engineering and Computing, 2014, 52, 611-618.	2.8	32
88	Observer variability of absolute and relative thrombus density measurements in patients with acute ischemic stroke. Neuroradiology, 2016, 58, 133-139.	2.2	31
89	Value of Thrombus CT Characteristics in Patients with Acute Ischemic Stroke. American Journal of Neuroradiology, 2017, 38, 1758-1764.	2.4	31
90	Healthy Life-Year Costs of Treatment Speed From Arrival to Endovascular Thrombectomy in Patients With Ischemic Stroke. JAMA Neurology, 2021, 78, 709.	9.0	30

#	Article	IF	Citations
91	Diffraction effects upon finite-frequency travel times: A simple 2-D example. Geophysical Research Letters, 1998, 25, 1983-1986.	4.0	29
92	Extracranial Carotid Disease and Effect of Intra-arterial Treatment in Patients With Proximal Anterior Circulation Stroke in MR CLEAN. Annals of Internal Medicine, 2017, 166, 867.	3.9	28
93	Impact of Ischemic Lesion Location on the mRS Score in Patients with Ischemic Stroke: A Voxel-Based Approach. American Journal of Neuroradiology, 2018, 39, 1989-1994.	2.4	28
94	Clinical and Imaging Markers Associated With Hemorrhagic Transformation in Patients With Acute Ischemic Stroke. Stroke, 2019, 50, 2037-2043.	2.0	28
95	A morphology based deep learning model for atrial fibrillation detection using single cycle electrocardiographic samples. International Journal of Cardiology, 2020, 316, 130-136.	1.7	28
96	Improving electrocardiogram-based detection of rare genetic heart disease using transfer learning: An application to phospholamban p.Arg14del mutation carriers. Computers in Biology and Medicine, 2021, 131, 104262.	7.0	28
97	Comparison of CTA- and DSA-Based Collateral Flow Assessment in Patients with Anterior Circulation Stroke. American Journal of Neuroradiology, 2016, 37, 2037-2042.	2.4	27
98	Value of machine learning in predicting TAVI outcomes. Netherlands Heart Journal, 2019, 27, 443-450.	0.8	27
99	Additional Value of Intra-Aneurysmal Hemodynamics in Discriminating Ruptured versus Unruptured Intracranial Aneurysms. American Journal of Neuroradiology, 2015, 36, 1920-1926.	2.4	26
100	Hemodynamic Differences in Intracranial Aneurysms before and after Rupture. American Journal of Neuroradiology, 2015, 36, 1927-1933.	2.4	26
101	Computer versus cardiologist: Is a machine learning algorithm able to outperform an expert in diagnosing a phospholamban p.Arg14del mutation on the electrocardiogram?. Heart Rhythm, 2021, 18, 79-87.	0.7	26
102	Accuracy of CT Angiography for Differentiating Pseudo-Occlusion from True Occlusion or High-Grade Stenosis of the Extracranial ICA in Acute Ischemic Stroke: A Retrospective MR CLEAN Substudy. American Journal of Neuroradiology, 2018, 39, 892-898.	2.4	25
103	Predicting Poor Outcome Before Endovascular Treatment in Patients With Acute Ischemic Stroke. Frontiers in Neurology, 2020, 11, 580957.	2.4	25
104	The first virtual patient-specific thrombectomy procedure. Journal of Biomechanics, 2021, 126, 110622.	2.1	25
105	Effect of Extended CT Perfusion Acquisition Time on Ischemic Core and Penumbra Volume Estimation in Patients with Acute Ischemic Stroke due to a Large Vessel Occlusion. PLoS ONE, 2015, 10, e0119409.	2.5	25
106	The Relation of Carotid Calcium Volume with Carotid Artery Stenosis in Symptomatic Patients. American Journal of Neuroradiology, 2011, 32, 1182-1187.	2.4	23
107	Histopathology: ditch the slides, because digital and 3D are on show. World Journal of Urology, 2018, 36, 549-555.	2.2	23
108	Deep Learning–based Recurrence Prediction in Patients with Non–muscle-invasive Bladder Cancer. European Urology Focus, 2022, 8, 165-172.	3.1	22

#	Article	IF	CITATIONS
109	Aortic Disease in Patients with Marfan Syndrome: Aortic Volume Assessment for Surveillance. Radiology, 2013, 269, 370-377.	7.3	21
110	Automated brain computed tomographic densitometry of early ischemic changes in acute stroke. Journal of Medical Imaging, 2015, 2, 014004.	1.5	21
111	Added value of multiphase CTA imaging for thrombus perviousness assessment. Neuroradiology, 2018, 60, 71-79.	2.2	20
112	Follow-up infarct volume as a mediator of endovascular treatment effect on functional outcome in ischaemic stroke. European Radiology, 2019, 29, 736-744.	4.5	20
113	Intracranial aneurysm growth: consistency of morphological changes. Neurosurgical Focus, 2019, 47, E5.	2.3	20
114	Domain- and task-specific transfer learning for medical segmentation tasks. Computer Methods and Programs in Biomedicine, 2022, 214, 106539.	4.7	20
115	Semi-automatic quantitative measurements of intracranial internal carotid artery stenosis and calcification using CT angiography. Neuroradiology, 2012, 54, 919-927.	2.2	19
116	Association of Automatically Quantified Total Blood Volume after Aneurysmal Subarachnoid Hemorrhage with Delayed Cerebral Ischemia. American Journal of Neuroradiology, 2016, 37, 1588-1593.	2.4	19
117	Strategies for managing multi-patient 3D mass spectrometry imaging data. Journal of Proteomics, 2019, 193, 184-191.	2.4	19
118	Predicting mortality of individual patients with COVID-19: a multicentre Dutch cohort. BMJ Open, 2021, 11, e047347.	1.9	19
119	Development and Validation of Intracranial Thrombus Segmentation on CT Angiography in Patients with Acute Ischemic Stroke. PLoS ONE, 2014, 9, e101985.	2.5	19
120	Performance of Semiautomatic Assessment of Carotid Artery Stenosis on CT Angiography: Clarification of Differences with Manual Assessment. American Journal of Neuroradiology, 2012, 33, 747-754.	2.4	18
121	Automated Entire Thrombus Density Measurements for Robust and Comprehensive Thrombus Characterization in Patients with Acute Ischemic Stroke. PLoS ONE, 2016, 11, e0145641.	2.5	18
122	Three-dimensional histopathological reconstruction of bladder tumours. Diagnostic Pathology, 2019, 14, 25.	2.0	18
123	3D movement correction of CT brain perfusion image data of patients with acute ischemic stroke. Neuroradiology, 2014, 56, 445-452.	2.2	17
124	k-t BLAST and SENSE accelerated time-resolved three-dimensional phase contrast MRI in an intracranial aneurysm. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2013, 26, 261-270.	2.0	16
125	Aneurysmal Parent Artery–Specific Inflow Conditions for Complete and Incomplete Circle of Willis Configurations. American Journal of Neuroradiology, 2018, 39, 910-915.	2.4	16
126	Automated segmentation of subarachnoid hemorrhages with convolutional neural networks. Informatics in Medicine Unlocked, 2020, 19, 100321.	3.4	16

#	Article	IF	CITATIONS
127	A break-glass protocol based on ciphertext-policy attribute-based encryption to access medical records in the cloud. Annales Des Telecommunications/Annals of Telecommunications, 2020, 75, 103-119.	2.5	16
128	PATCH trial: explanatory analyses. Blood, 2020, 135, 1406-1409.	1.4	16
129	Economic Evaluation of Endovascular Treatment for Acute Ischemic Stroke. Stroke, 2022, 53, 968-975.	2.0	16
130	Automatic Detection of CT Perfusion Datasets Unsuitable for Analysis due to Head Movement of Acute Ischemic Stroke Patients. Journal of Healthcare Engineering, 2014, 5, 67-78.	1.9	15
131	Multiscale 3-D + <i>t</i> Intracranial Aneurysmal Flow Vortex Detection. IEEE Transactions on Biomedical Engineering, 2015, 62, 1355-1362.	4.2	15
132	Association of Quantified Location-Specific Blood Volumes with Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage. American Journal of Neuroradiology, 2018, 39, 1059-1064.	2.4	15
133	Early recanalization in large-vessel occlusion stroke patients transferred for endovascular treatment. Journal of NeuroInterventional Surgery, 2022, 14, 480-484.	3.3	15
134	Prediction of Stroke Infarct Growth Rates by Baseline Perfusion Imaging. Stroke, 2022, 53, 569-577.	2.0	15
135	Combination of Radiological and Clinical Baseline Data for Outcome Prediction of Patients With an Acute Ischemic Stroke. Frontiers in Neurology, 2022, 13, 809343.	2.4	15
136	Imaging for approach selection of TAVI: assessment of the aorto-iliac tract diameter by computed tomography-angiography versus projection angiography. International Journal of Cardiovascular Imaging, 2014, 30, 399-405.	1.5	14
137	Endovascular Treatment Effect Diminishes With Increasing Thrombus Perviousness: Pooled Data From 7 Trials on Acute Ischemic Stroke. Stroke, 2021, 52, 3633-3641.	2.0	14
138	Detection of large vessel occlusion stroke with electroencephalography in the emergency room: first results of the ELECTRA-STROKE study. Journal of Neurology, 2022, 269, 2030-2038.	3.6	14
139	Aortic valve calcification as a predictor of location and severity of paravalvular regurgitation after transcatheter aortic valve implantation. Interactive Cardiovascular and Thoracic Surgery, 2015, 20, 345-350.	1.1	13
140	Toward Automated <i>In Vivo</i> Bladder Tumor Stratification Using Confocal Laser Endomicroscopy. Journal of Endourology, 2019, 33, 930-937.	2.1	13
141	Detection of Large Vessel Occlusion Stroke in the Prehospital Setting. Stroke, 2021, 52, e347-e355.	2.0	13
142	From perviousness to permeability, modelling and measuring intra-thrombus flow in acute ischemic stroke. Journal of Biomechanics, 2020, 111, 110001.	2.1	12
143	A Convolutional Neural Network for Anterior Intra-Arterial Thrombus Detection and Segmentation on Non-Contrast Computed Tomography of Patients with Acute Ischemic Stroke. Applied Sciences (Switzerland), 2020, 10, 4861.	2.5	12
144	Solutions for Mitigating Cybersecurity Risks Caused by Legacy Software in Medical Devices: A Scoping Review. IEEE Access, 2020, 8, 84352-84361.	4.2	12

#	Article	IF	CITATIONS
145	The Role of Edema in Subacute Lesion Progression After Treatment of Acute Ischemic Stroke. Frontiers in Neurology, 2021, 12, 705221.	2.4	12
146	Quantitative analysis of EEG reactivity for neurological prognostication after cardiac arrest. Clinical Neurophysiology, 2021, 132, 2240-2247.	1.5	12
147	Associations of thrombus perviousness derived from entire thrombus segmentation with functional outcome in patients with acute ischemic stroke. Journal of Biomechanics, 2021, 128, 110700.	2.1	12
148	Dynamics of the aortic annulus in 4D CT angiography for transcatheter aortic valve implantation patients. PLoS ONE, 2017, 12, e0184133.	2.5	12
149	Predicting Delayed Cerebral Ischemia with Quantified Aneurysmal Subarachnoid Blood Volume. World Neurosurgery, 2019, 130, e613-e619.	1.3	11
150	Estimation of microvascular perfusion after esophagectomy: a quantitative model of dynamic fluorescence imaging. Medical and Biological Engineering and Computing, 2019, 57, 1889-1900.	2.8	11
151	Added Prognostic Value of Hemorrhagic Transformation Quantification in Patients With Acute Ischemic Stroke. Frontiers in Neurology, 2020, 11, 582767.	2.4	11
152	Comparing Morphology and Hemodynamics of Stable-versus-Growing and Grown Intracranial Aneurysms. American Journal of Neuroradiology, 2019, 40, 2102-2110.	2.4	11
153	A review on the association of thrombus composition with mechanical and radiological imaging characteristics in acute ischemic stroke. Journal of Biomechanics, 2021, 129, 110816.	2.1	11
154	Aortic Disease in Patients with Marfan Syndrome: Aortic Volume Assessment for Surveillance. Radiology, 2013, 269, 370-377.	7.3	11
155	Coronary CT angiography: IVUS image fusion for quantitative plaque and stenosis analyses. Proceedings of SPIE, 2008, , .	0.8	10
156	Intracranial carotid artery disease in patients with recent neurological symptoms: high prevalence on CTA. Neuroradiology, 2013, 55, 179-185.	2.2	10
157	Prediction of Outcome Using Quantified Blood Volume in Aneurysmal SAH. American Journal of Neuroradiology, 2020, 41, 1015-1021.	2.4	10
158	Thrombectomy for acute ischemic stroke patients with isolated distal internal carotid artery occlusion: a retrospective observational study. Neuroradiology, 2021, 63, 777-786.	2.2	10
159	Modelling the leptomeningeal collateral circulation during acute ischaemic stroke. Medical Engineering and Physics, 2021, 91, 1-11.	1.7	10
160	The effect of head movement on CT perfusion summary maps: simulations with CT hybrid phantom data. Medical and Biological Engineering and Computing, 2014, 52, 141-147.	2.8	9
161	Diagnostic Accuracy of 4 Commercially Available Semiautomatic Packages for Carotid Artery Stenosis Measurement on CTA. American Journal of Neuroradiology, 2015, 36, 1978-1987.	2.4	9
162	qTICI: Quantitative assessment of brain tissue reperfusion on digital subtraction angiograms of acute ischemic stroke patients. International Journal of Stroke, 2021, 16, 207-216.	5.9	9

#	Article	IF	Citations
163	Evolutionary algorithms and decision trees for predicting poor outcome after endovascular treatment for acute ischemic stroke. Computers in Biology and Medicine, 2021, 133, 104414.	7.0	9
164	Patient-tailored Contrast Delivery Protocols for Computed Tomography Coronary Angiography. Journal of Thoracic Imaging, 2021, 36, 353-359.	1.5	9
165	Impact of the Internal Carotid Artery Morphology on in silico Stent-Retriever Thrombectomy Outcome. Frontiers in Medical Technology, 2021, 3, 719909.	2.5	9
166	Quantified health and cost effects of faster endovascular treatment for large vessel ischemic stroke patients in the Netherlands. Journal of NeuroInterventional Surgery, 2021, 13, 1099-1105.	3.3	9
167	Fully Automated Thrombus Segmentation on CT Images of Patients with Acute Ischemic Stroke. Diagnostics, 2022, 12, 698.	2.6	9
168	Automated determination of optimal angiographic viewing angles for coronary artery bifurcations from CTA data. Proceedings of SPIE, 2008, , .	0.8	8
169	Accuracy of Noninvasive Coronary Stenosis Quantification of Different Commercially Available Dedicated Software Packages. Journal of Computer Assisted Tomography, 2009, 33, 505-512.	0.9	8
170	Multiscale Flow Patterns Within an Intracranial Aneurysm Phantom. IEEE Transactions on Biomedical Engineering, 2011, 58, 3447-3450.	4.2	8
171	An isolated beating pig heart platform for a comprehensive evaluation of intracardiac blood flow with 4D flow MRI: a feasibility study. European Radiology Experimental, 2019, 3, 40.	3.4	8
172	Automatic Initialization Algorithm for Carotid Artery Segmentation in CTA Images. Lecture Notes in Computer Science, 2005, 8, 846-853.	1.3	8
173	Quantitative Collateral Grading on CT Angiography in Patients with Acute Ischemic Stroke. Lecture Notes in Computer Science, 2017, , 176-184.	1.3	8
174	A computed tomography-based planning tool for predicting difficulty of minimally invasive aortic valve replacement. Interactive Cardiovascular and Thoracic Surgery, 2018, 27, 505-511.	1.1	7
175	Ruptured middle cerebral artery aneurysms with a concomitant intraparenchymal hematoma: the role of hematoma volume. Neuroradiology, 2018, 60, 335-342.	2.2	7
176	Accuracy of "At Risk―Tissue Predictions Using CT Perfusion in Acute Large Vessel Occlusions. Journal of Neuroimaging, 2019, 29, 371-375.	2.0	7
177	AC-AC: Dynamic revocable access control for acute care teams to access medical records. Smart Health, 2021, 20, 100190.	3.2	7
178	Cancer detection in mass spectrometry imaging data by dilated convolutional neural networks. , 2019, , .		7
179	Performance of an automated photoplethysmography-based artificial intelligence algorithm to detect atrial fibrillation. Cardiovascular Digital Health Journal, 2020, 1, 107-110.	1.3	7
180	Cost-effectiveness of CT perfusion for patients with acute ischemic stroke (CLEOPATRA)-Study protocol for a healthcare evaluation study. European Stroke Journal, 2022, 7, 188-197.	5.5	7

#	Article	IF	Citations
181	Automated CTA based measurements for planning support of minimally invasive aortic valve replacement surgery. Medical Engineering and Physics, 2017, 39, 123-128.	1.7	6
182	Comparison of non-triggered magnetic resonance imaging and echocardiography for the assessment of left atrial volume and morphology. Cardiovascular Ultrasound, 2018, 16, 17.	1.6	6
183	Minimal invasive aortic valve replacement: associations of radiological assessments with procedure complexity. Journal of Cardiothoracic Surgery, 2019, 14, 173.	1.1	6
184	Endovascular treatment for calcified cerebral emboli in patients with acute ischemic stroke. Journal of Neurosurgery, 2021, 135, 1402-1412.	1.6	6
185	Posttreatment Ischemic Lesion Evolution Is Associated With Reduced Favorable Functional Outcome in Patients With Stroke. Stroke, 2021, 52, 3523-3531.	2.0	6
186	Quantitative 3D analysis of tissue damage in a rat model of microembolization. Journal of Biomechanics, 2021, 128, 110723.	2.1	6
187	Association of Ischemic Core Imaging Biomarkers With Post-Thrombectomy Clinical Outcomes in the MR CLEAN Registry. Frontiers in Neurology, 2021, 12, 771367.	2.4	6
188	Quantitative thrombus characteristics on thin-slice computed tomography improve prediction of thrombus histopathology: results of the MR CLEAN Registry. European Radiology, 2022, 32, 7811-7823.	4.5	6
189	Three-Dimensional Rotational Angiography of the Foot in Critical Limb Ischemia: A New Dimension in Revascularization Strategy. CardioVascular and Interventional Radiology, 2013, 36, 797-802.	2.0	5
190	Dynamic CT perfusion image data compression for efficient parallel processing. Medical and Biological Engineering and Computing, 2016, 54, 463-473.	2.8	5
191	Non-contrast enhanced navigator-gated balanced steady state free precession magnetic resonance angiography as a preferred magnetic resonance technique for assessment of the thoracic aorta. Clinical Radiology, 2017, 72, 695.e1-695.e6.	1.1	5
192	Influence of Onset to Imaging Time on Radiological Thrombus Characteristics in Acute Ischemic Stroke. Frontiers in Neurology, 2021, 12, 693427.	2.4	5
193	Clinical Outcome in Patients With Intracerebral Hemorrhage Stratified by Type of Antithrombotic Therapy. Frontiers in Neurology, 2021, 12, 684476.	2.4	5
194	Occult blood flow patterns distal to an occluded artery in acute ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 292-302.	4.3	5
195	Prediction of Atrial Fibrillation Recurrence after Thoracoscopic Surgical Ablation Using Machine Learning Techniques. Diagnostics, 2021, 11, 1787.	2.6	5
196	Successful reperfusion in relation to the number of passes: comparing outcomes of first pass expanded Treatment In Cerebral Ischemia (eTICI) 2B with multiple-pass eTICI 3. Journal of NeuroInterventional Surgery, 2023, 15, 120-126.	3.3	5
197	Topographic distribution of cerebral infarct probability in patients with acute ischemic stroke: mapping of intra-arterial treatment effect. Journal of NeuroInterventional Surgery, 2017, 9, 431-436.	3.3	4
198	Estimation of Abdominal Aortic Aneurysm Rupture Risk with Biomechanical ImagingÂMarkers. Journal of Vascular and Interventional Radiology, 2019, 30, 987-994.e4.	0.5	4

#	Article	IF	Citations
199	Impact of Intracranial Aneurysm Morphology and Rupture Status on the Particle Residence Time. Journal of Neuroimaging, 2019, 29, 487-492.	2.0	4
200	Mind the Heart: Electrocardiography-gated cardiac computed tomography-angiography in acute ischaemic stroke—rationale and study design. European Stroke Journal, 2020, 5, 441-448.	5.5	4
201	Value of repeated imaging in patients with a stroke who are transferred for endovascular treatment. Journal of NeuroInterventional Surgery, 2021, , neurintsurg-2020-017050.	3.3	4
202	Automated Final Lesion Segmentation in Posterior Circulation Acute Ischemic Stroke Using Deep Learning. Diagnostics, 2021, 11, 1621.	2.6	4
203	Added Value of a Blinded Outcome Adjudication Committee in an Open-Label Randomized Stroke Trial. Stroke, 2022, 53, 61-69.	2.0	4
204	The prognostic value of extracranial vascular characteristics on procedural duration and revascularization success in endovascularly treated acute ischemic stroke patients. European Stroke Journal, 2022, 7, 48-56.	5.5	4
205	Probability maps classify ischemic stroke regions more accurately than CT perfusion summary maps. European Radiology, 2022, 32, 6367-6375.	4.5	4
206	Bifurcation occlusions and endovascular treatment outcome in acute ischemic stroke. Journal of NeuroInterventional Surgery, 2023, 15, 355-363.	3.3	4
207	Modelâ€based measurements of the diameter of the internal carotid artery in CT angiography images. Medical Physics, 2010, 37, 5711-5727.	3.0	3
208	Early detection of small volume stroke and thromboembolic sources with computed tomography: Rationale and design of the ENCLOSE study. European Stroke Journal, 2020, 5, 432-440.	5.5	3
209	Value of infarct location in the prediction of functional outcome in patients with an anterior large vessel occlusion: results from the HERMES study. Neuroradiology, 2022, 64, 521-530.	2.2	3
210	Automated Ventricular System Segmentation in CT Images of Deformed Brains Due to Ischemic and Subarachnoid Hemorrhagic Stroke. Lecture Notes in Computer Science, 2017, , 149-157.	1.3	3
211	Benefit of mechanical thrombectomy in acute ischemic stroke related to calcified cerebral embolus. Journal of Neuroradiology, 2022, 49, 317-323.	1.1	3
212	Semiautomatic Sizing Software in Emergency Endovascular Aneurysm Repair for Ruptured Abdominal Aortic Aneurysms. CardioVascular and Interventional Radiology, 2014, 37, 623-30.	2.0	2
213	Cancer Detection in Mass Spectrometry Imaging Data by Recurrent Neural Networks. , 2019, , .		2
214	Red Alert: Break-Glass Protocol to Access Encrypted Medical Records in the Cloud. , 2019, , .		2
215	Optimizing Computed Tomographic Angiography Image Segmentation Using Fitness Based Partitioning. Lecture Notes in Computer Science, 2008, , 275-284.	1.3	2
216	Development of a patient-specific cerebral vasculature fluid–structure-interaction model. Journal of Biomechanics, 2022, 133, 110896.	2.1	2

#	Article	IF	Citations
217	Endovascular Treatment May Benefit Patients With Low Baseline Alberta Stroke Program Early CT Score: Results From the MR CLEAN Registry. , 2022, 2, .		2
218	Association of thrombus density and endovascular treatment outcomes in patients with acute ischemic stroke due to M1 occlusions. Neuroradiology, 2022, , .	2.2	2
219	Deep-Learning-Based Thrombus Localization and Segmentation in Patients with Posterior Circulation Stroke. Diagnostics, 2022, 12, 1400.	2.6	2
220	Image Based Automated ASPECT Score for Acute Ischemic Stroke Patients., 2017,,.		1
221	Inter-Center Cross-Validation and Finetuning without Patient Data Sharing for Predicting Transcatheter Aortic Valve Implantation Outcome. , 2020, , .		1
222	Effect of CAD on performance in ASPECTS reading. Informatics in Medicine Unlocked, 2020, 18, 100295.	3 . 4	1
223	Heterogeneous Platform Programming for High Performance Medical Imaging Processing. Lecture Notes in Computer Science, 2014, , 301-310.	1.3	1
224	The Effect of Non-contrast CT Slice Thickness on Thrombus Density and Perviousness Assessment. Lecture Notes in Computer Science, 2017, , 168-175.	1.3	1
225	Thrombolysis in Cerebral Infarction Scoring at the Core Lab. Journal of Neurosonology and Neuroimaging, 2018, 10, 95-99.	0.1	1
226	Hemodynamic changes after intracranial aneurysm growth. Journal of Neurosurgery, 2022, 136, 1738-1744.	1.6	1
227	Local and Distributed Machine Learning for Inter-hospital Data Utilization: An Application for TAVI Outcome Prediction. Frontiers in Cardiovascular Medicine, 2021, 8, 787246.	2.4	1
228	Thrombus Imaging Characteristics and Outcomes in Posterior Circulation Stroke Patients Treated With EVT. , 2022, 2, .		1
229	Automated Detection and Location Specification of Large Vessel Occlusion on Computed Tomography Angiography in Acute Ischemic Stroke. , 2022, 2, .		1
230	Thrombus imaging characteristics within acute ischemic stroke: similarities and interdependence. Journal of NeuroInterventional Surgery, 2023, 15, e60-e68.	3.3	1
231	Labeling the pulmonary arterial tree in CT images for automatic quantification of pulmonary embolism. , 2007, 6514, 1145.		0
232	CT blurring induced bias of quantitative in-stent restenosis analyses. Proceedings of SPIE, 2008, , .	0.8	0
233	Reply:. American Journal of Neuroradiology, 2012, 33, E15-E15.	2.4	0
234	Analyses of thrombi in cerebral arteries with endovascular thrombectomy for acute ischemic stroke: A consensus statement. Journal of Stroke and Cerebrovascular Diseases, 2017, 26, 889.	1.6	0

#	Article	IF	CITATIONS
235	7T versus 3T MR Angiography to Assess Unruptured Intracranial Aneurysms. Journal of Neuroimaging, 2020, 30, 779-785.	2.0	O
236	Automatic Selection of CT Perfusion Datasets Unsuitable for CTP Analysis due to Head Movement. IFMBE Proceedings, 2014, , 336-339.	0.3	O
237	Automated Detection of Aortic Root Landmarks in Preprocedure CT Angiography Images for Transcatheter Aortic Valve Implantation Patients. Lecture Notes in Computer Science, 2015, , 402-410.	1.3	О
238	Recurrence in Non-Muscle Invasive Bladder Cancer Patients: External Validation of the EORTC, CUETO and EAU Risk Tables and Towards a Non-Linear Survival Model. Bladder Cancer, 2020, 6, 277-284.	0.4	0
239	Arterial Steal to the Penumbra Area in Patients with Acute MCA Occlusion: A Quantitative Angiographic Analysis. Neurointervention, 2020, 15, 126-132.	0.8	О
240	Limitations of Quantitative Blush Evaluator (QuBE) as myocardial perfusion assessment method on digital coronary angiograms. Journal of Clinical and Translational Research, 2018, 3, 394-400.	0.3	O
241	PO-631-03 DEEP LEARNING FOR THE IDENTIFICATION OF PATIENTS WITH A HIGH RISK FOR IDIOPATHIC VENTRICULAR FIBRILLATION. Heart Rhythm, 2022, 19, S168-S169.	0.7	O
242	Machine learning-based prediction of insufficient contrast enhancement in coronary computed tomography angiography. European Radiology, 0, , .	4.5	0