Natalie Stingelin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3072553/publications.pdf

Version: 2024-02-01

201 papers

13,455 citations

²⁶⁶³⁰
56
h-index

24258 110 g-index

208 all docs 208 docs citations

times ranked

208

13719 citing authors

#	Article	IF	CITATIONS
1	Planar refractive index patterning through microcontact photo-thermal annealing of a printable organic/inorganic hybrid material. Materials Horizons, 2022, 9, 411-416.	12.2	4
2	Conjugated Polymer Mesocrystals with Structural and Optoelectronic Coherence and Anisotropy in Three Dimensions. Advanced Materials, 2022, 34, e2103002.	21.0	11
3	Glossary of terms relating to electronic, photonic and magnetic properties of polymers (IUPAC) Tj ETQq1 1 0.784	314 rgBT	Overlock 10
4	Femtosecond Laserâ€Induced Refractive Index Patterning in Inorganic/Organic Hybrid Films. Advanced Photonics Research, 2022, 3, .	3.6	1
5	Limiting Relative Permittivity "Burn-in―in Polymer Ferroelectrics via Phase Stabilization. ACS Macro Letters, 2022, 11, 410-414.	4.8	1
6	In memoriam of Alasdair James Campbell. Journal of Materials Chemistry C, 2022, 10, 8894-8894.	5.5	0
7	In Situ Studies of the Swelling by an Electrolyte in Electrochemical Doping of Ethylene Glycol-Substituted Polythiophene. ACS Applied Materials & Enterfaces, 2022, 14, 29052-29060.	8.0	13
8	Enhanced Electrocaloric Response of Vinylidene Fluoride–Based Polymers via One‧tep Molecular Engineering. Advanced Functional Materials, 2021, 31, .	14.9	21
9	A Lowâ€Swelling Polymeric Mixed Conductor Operating in Aqueous Electrolytes. Advanced Materials, 2021, 33, e2005723.	21.0	33
10	Solution-processing of semiconducting organic small molecules: what we have learnt from 5,11-bis(triethylsilylethynyl)anthradithiophene. Journal of Materials Chemistry C, 2021, 9, 10547-10556.	5.5	11
11	Understanding hierarchical spheres-in-grating assembly for bio-inspired colouration. Materials Horizons, 2021, 8, 2230-2237.	12.2	6
12	Balancing crop production and energy harvesting in organic solar-powered greenhouses. Cell Reports Physical Science, 2021, 2, 100381.	5.6	48
13	Polymorphism in Nonâ€Fullerene Acceptors Based on Indacenodithienothiophene. Advanced Functional Materials, 2021, 31, 2103784.	14.9	33
14	An Informatics Approach for Designing Conducting Polymers. ACS Applied Materials & Amp; Interfaces, 2021, 13, 53314-53322.	8.0	11
15	Providing a Window into the Phase Behavior of Semiconducting Polymers. Macromolecules, 2021, 54, 5304-5320.	4.8	9
16	Improving molecular alignment and charge percolation in semiconducting polymer films with highly localized electronic states through tailored thermal annealing. Journal of Materials Chemistry C, 2021, 9, 15848-15857.	5.5	8
17	Frenkel biexcitons in hybrid HJ photophysical aggregates. Science Advances, 2021, 7, eabi5197.	10.3	10
18	The Role of Morphology in Optically Switchable Transistors Based on a Photochromic Molecule/pâ€₹ype Polymer Semiconductor Blend. Advanced Functional Materials, 2020, 30, 1907507.	14.9	20

#	Article	IF	CITATIONS
19	The Importance of Quantifying the Composition of the Amorphous Intermixed Phase in Organic Solar Cells. Advanced Materials, 2020, 32, e2005241.	21.0	21
20	Effects of Counterâ€lon Size on Delocalization of Carriers and Stability of Doped Semiconducting Polymers. Advanced Electronic Materials, 2020, 6, 2000595.	5.1	33
21	High-density polyethylene—an inert additive with stabilizing effects on organic field-effect transistors. Journal of Materials Chemistry C, 2020, 8, 15406-15415.	5 . 5	15
22	Elucidating the Influence of Side-Chain Circular Distribution on the Crack Onset Strain and Hole Mobility of Near-Amorphous Indacenodithiophene Copolymers. Macromolecules, 2020, 53, 7511-7518.	4.8	25
23	Toward Fast Screening of Organic Solar Cell Blends. Advanced Science, 2020, 7, 2000960.	11.2	15
24	What is Killing Organic Photovoltaics: Lightâ€Induced Crosslinking as a General Degradation Pathway of Organic Conjugated Molecules. Advanced Energy Materials, 2020, 10, 1903163.	19.5	38
25	Terminology of polymers in advanced lithography (IUPAC Recommendations 2020). Pure and Applied Chemistry, 2020, 92, 1861-1891.	1.9	2
26	Microstructural control suppresses thermal activation of electron transport at room temperature in polymer transistors. Nature Communications, 2019, 10, 3365.	12.8	30
27	Fully Solutionâ€Processed Photonic Structures from Inorganic/Organic Molecular Hybrid Materials and Commodity Polymers. Advanced Functional Materials, 2019, 29, 1808152.	14.9	14
28	List of keywords for polymer science (IUPAC Technical Report). Pure and Applied Chemistry, 2019, 91, 997-1027.	1.9	0
29	Managing Local Order in Conjugated Polymer Blends via Polarity Contrast. Chemistry of Materials, 2019, 31, 6540-6547.	6.7	20
30	Nanocomposite of nickel oxide nanoparticles and polyethylene oxide as printable hole transport layer for organic solar cells. Sustainable Energy and Fuels, 2019, 3, 1418-1426.	4.9	31
31	Robust Processing of Small-Molecule:Fullerene Organic Solar Cells via Use of Nucleating Agents. ACS Applied Energy Materials, 2018, 1, 1973-1980.	5.1	2
32	Temperature-Dependence of Persistence Length Affects Phenomenological Descriptions of Aligning Interactions in Nematic Semiconducting Polymers. Chemistry of Materials, 2018, 30, 748-761.	6.7	17
33	Direct Calorimetric Observation of the Rigid Amorphous Fraction in a Semiconducting Polymer. Journal of Physical Chemistry Letters, 2018, 9, 990-995.	4.6	61
34	Controlling aggregate formation in conjugated polymers by spinâ€coating below the critical temperature of the disorder–order transition. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 532-542.	2.1	34
35	Designing Small Molecules as Ternary Energy-Cascade Additives for Polymer:Fullerene Solar Cell Blends. Chemistry of Materials, 2018, 30, 2213-2217.	6.7	21
36	Molecular weight dependence of carrier mobility and recombination rate in neat P3HT films. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 31-35.	2.1	42

#	Article	IF	Citations
37	Toward Stretchable Selfâ€Powered Sensors Based on the Thermoelectric Response of PEDOT:PSS/Polyurethane Blends. Advanced Functional Materials, 2018, 28, 1704285.	14.9	171
38	On the Effect of Confinement on the Structure and Properties of Smallâ€Molecular Organic Semiconductors. Advanced Electronic Materials, 2018, 4, 1700308.	5.1	19
39	Terahertz short-range mobilities in neat and intermixed regions of polymer:fullerene blends with controlled phase morphology. Journal of Materials Chemistry A, 2018, 6, 22301-22309.	10.3	15
40	Correlating Crystal Thickness, Surface Morphology, and Charge Transport in Pristine and Doped Rubrene Single Crystals. ACS Applied Materials & Enterfaces, 2018, 10, 26745-26751.	8.0	18
41	Scalable syntheses of well-defined pentadecablock bipolymer and quintopolymer. Polymer Chemistry, 2018, 9, 3450-3454.	3.9	21
42	Effects of Side-Chain Length and Shape on Polytellurophene Molecular Order and Blend Morphology. Journal of Physical Chemistry C, 2017, 121, 2088-2098.	3.1	28
43	Convective self-assembly of π-conjugated oligomers and polymers. Journal of Materials Chemistry C, 2017, 5, 2513-2518.	5.5	18
44	Solid-state-processing of Î-PVDF. Materials Horizons, 2017, 4, 408-414.	12.2	43
45	Organic Gelators as Growth Control Agents for Stable and Reproducible Hybrid Perovskiteâ€Based Solar Cells. Advanced Energy Materials, 2017, 7, 1602600.	19.5	78
46	New 3,3 \hat{a} \in 2-(ethane-1,2-diylidene)bis(indolin-2-one) (EBI)-based small molecule semiconductors for organic solar cells. Journal of Materials Chemistry C, 2017, 5, 5143-5153.	5.5	6
47	Diketopyrrolopyrroleâ€Based Conjugated Polymer Entailing Triethylene Glycols as Side Chains with High Thinâ€Film Charge Mobility without Post‶reatments. Advanced Science, 2017, 4, 1700048.	11.2	58
48	Relaxations and Relaxor-Ferroelectric-Like Response of Nanotubularly Confined Poly(vinylidene) Tj ETQq0 0 0 rgB	T /Oxerloc	k 10 Tf 50 30
49	Origin of fullerene-induced vitrification of fullerene:donor polymer photovoltaic blends and its impact on solar cell performance. Journal of Materials Chemistry A, 2017, 5, 2689-2700.	10.3	29
50	Excitonic coupling dominates the homogeneous photoluminescence excitation linewidth in semicrystalline polymeric semiconductors. Physical Review B, 2017, 95, .	3.2	17
51	The Importance of Materials Design to Make Ions Flow: Toward Novel Materials Platforms for Bioelectronics Applications. Advanced Materials, 2017, 29, 1604446.	21.0	31
52	A Novel Alkylated Indacenodithieno[3,2â€b]thiopheneâ€Based Polymer for Highâ€Performance Fieldâ€Effect Transistors. Advanced Materials, 2016, 28, 3922-3927.	21.0	117
53	Synthesis and properties of a novel narrow band gap oligomeric diketopyrrolopyrrole-based organic semiconductor. Dyes and Pigments, 2016, 131, 160-167.	3.7	8
54	ORGANIC SEMICONDUCTORS: MANIPULATION AND CONTROL OF THE MICROSTRUCTURE OF ACTIVE LAYERS. Materials and Energy, 2016, , 159-193.	0.1	1

#	Article	IF	CITATIONS
55	The influence of polymer purification on the efficiency of poly(3-hexylthiophene):fullerene organic solar cells. Scientific Reports, 2016, 6, 23651.	3.3	44
56	The fate of electron–hole pairs in polymer:fullerene blends for organic photovoltaics. Nature Communications, 2016, 7, 12556.	12.8	68
57	Altering the emission properties of conjugated polymers. Polymer International, 2016, 65, 157-163.	3.1	24
58	Room temperature dielectric bistability in solution-processed spin crossover polymer thin films. Journal of Materials Chemistry C, 2016, 4, 6240-6248.	5.5	17
59	Decoupling Charge Transport and Electroluminescence in a High Mobility Polymer Semiconductor. Advanced Materials, 2016, 28, 6378-6385.	21.0	22
60	Confinement effects on the crystalline features of poly(9,9-dioctylfluorene). European Polymer Journal, 2016, 81, 650-660.	5.4	13
61	Using Molecular Design to Increase Hole Transport: Backbone Fluorination in the Benchmark Material		

#	Article	IF	CITATIONS
73	Direct Correlation of Charge Transfer Absorption with Molecular Donor:Acceptor Interfacial Area via Photothermal Deflection Spectroscopy. Journal of the American Chemical Society, 2015, 137, 5256-5259.	13.7	45
74	Diels–Alders adducts of C ₆₀ and esters of 3-(1-indenyl)-propionic acid: alternatives for [60]PCBM in polymer:fullerene solar cells. Chemical Communications, 2015, 51, 8126-8129.	4.1	17
75	Role of Sideâ€Chain Branching on Thinâ€Film Structure and Electronic Properties of Polythiophenes. Advanced Functional Materials, 2015, 25, 2616-2624.	14.9	65
76	The separation of vibrational coherence from ground- and excited-electronic states in P3HT film. Journal of Chemical Physics, 2015, 142, 212410.	3.0	51
77	Multi-phase microstructures drive exciton dissociation in neat semicrystalline polymeric semiconductors. Journal of Materials Chemistry C, 2015, 3, 10715-10722.	5 . 5	689
78	Using the Stark effect to understand charge generation in organic solar cells. Proceedings of SPIE, 2015, , .	0.8	1
79	Copper thiocyanate: An attractive hole transport/extraction layer for use in organic photovoltaic cells. Applied Physics Letters, 2015, 107, .	3.3	53
80	Polytellurophenes provide imaging contrast towards unravelling the structure–property–function relationships in semiconductor:insulator polymer blends. Journal of Materials Chemistry C, 2015, 3, 3767-3773.	5 . 5	23
81	2,1,3â€Benzothiadiazoleâ€5,6â€Dicarboxylic Imide – A Versatile Building Block for Additive―and Annealingâ€ Processing of Organic Solar Cells with Efficiencies Exceeding 8%. Advanced Materials, 2015, 27, 948-953.	ree 21.0	88
82	Solution processing of polymer semiconductor: Insulator blendsâ€"Tailored optical properties through liquidâ€"liquid phase separation control. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 304-310.	2.1	25
83	Emission properties of MEH-PPV in thin films simultaneously illuminated and annealed at different temperatures. Synthetic Metals, 2015, 199, 33-36.	3.9	23
84	Highly efficient photochemical upconversion in a quasi-solid organogel. Journal of Materials Chemistry C, 2015, 3, 616-622.	5.5	72
85	Highâ€Efficiency Organic Photovoltaic Cells Based on the Solutionâ€Processable Hole Transporting Interlayer Copper Thiocyanate (CuSCN) as a Replacement for PEDOT:PSS. Advanced Energy Materials, 2015, 5, 1401529.	19.5	133
86	Alternating Copolymers Incorporating Dithienogemolodithiophene for Field-Effect Transistor Applications. Macromolecules, 2014, 47, 8602-8610.	4.8	23
87	Influence of Molecular Conformations and Microstructure on the Optoelectronic Properties of Conjugated Polymers. Materials, 2014, 7, 2273-2300.	2.9	90
88	Nanostructures: Fullerene Nucleating Agents: A Route Towards Thermally Stable Photovoltaic Blends (Adv. Energy Mater. 9/2014). Advanced Energy Materials, 2014, 4, n/a-n/a.	19.5	0
89	Control of polythiophene film microstructure and charge carrier dynamics through crystallization temperature. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 700-707.	2.1	15
90	Fullerene Nucleating Agents: A Route Towards Thermally Stable Photovoltaic Blends. Advanced Energy Materials, 2014, 4, 1301437.	19.5	65

#	Article	IF	Citations
91	Benzocarborano[2,1- <i>b</i> :3,4- <i>b</i> ê²]dithiophene Containing Conjugated Polymers: Synthesis, Characterization, and Optoelectronic Properties. Macromolecules, 2014, 47, 89-96.	4.8	19
92	Use of microcutting for high throughput electrode patterning on a flexible substrate. Journal of Micromechanics and Microengineering, 2014, 24, 015015.	2.6	0
93	Use of a commercially available nucleating agent to control the morphological development of solution-processed small molecule bulk heterojunction organic solar cells. Journal of Materials Chemistry A, 2014, 2, 15717-15721.	10.3	43
94	Additive-assisted supramolecular manipulation of polymer:fullerene blend phase morphologies and its influence on photophysical processes. Materials Horizons, 2014, 1, 270-279.	12.2	58
95	Light absorption of poly(3-hexylthiophene) single crystals. RSC Advances, 2014, 4, 11121-11123.	3.6	85
96	Tailoring the void space and mechanical properties in electrospun scaffolds towards physiological ranges. Journal of Materials Chemistry B, 2014, 2, 305-313.	5.8	40
97	The influence of microstructure on charge separation dynamics in organic bulk heterojunction materials for solar cell applications. Journal of Materials Chemistry A, 2014, 2, 6218-6230.	10.3	48
98	Spectroscopic Evaluation of Mixing and Crystallinity of Fullerenes in Bulk Heterojunctions. Advanced Functional Materials, 2014, 24, 6972-6980.	14.9	26
99	Semiconducting:insulating polymer blends for optoelectronic applications—a review of recent advances. Journal of Materials Chemistry A, 2014, 2, 10818-10824.	10.3	93
100	Direct observation of ultrafast long-range charge separation at polymer–fullerene heterojunctions. Nature Communications, 2014, 5, 4288.	12.8	140
101	Enhancing the Photoluminescence Emission of Conjugated MEH-PPV by Light Processing. ACS Applied Materials & Samp; Interfaces, 2014, 6, 4974-4979.	8.0	35
102	Regio-Regular Oligo and Poly(3-hexyl thiophene): Precise Structural Markers from the Vibrational Spectra of Oligomer Single Crystals Macromolecules, 2014, 47, 6730-6739.	4.8	42
103	Bis (triis opropyl sily lethynyl) pentacene / Au (111) Interface: Coupling, Molecular Orientation, and Thermal Stability. Journal of Physical Chemistry C, 2014, 118, 22522-22532.	3.1	10
104	Thermoelectric Materials: A Brief Historical Survey from Metal Junctions and Inorganic Semiconductors to Organic Polymers. Israel Journal of Chemistry, 2014, 54, 534-552.	2.3	37
105	Controlling the Solidification of Organic Photovoltaic Blends with Nucleating Agents. Organic Photonics and Photovoltaics, 2014, 2, .	1.3	4
106	A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nature Materials, 2013, 12, 1038-1044.	27.5	1,742
107	On the role of intermixed phases in organic photovoltaic blends. Energy and Environmental Science, 2013, 6, 2756.	30.8	157
108	Near Infrared Absorbing Soluble Poly(cyclopenta [2,1-b:3,4-b′] dithiophen-4-one) vinylene Polymers Exhibiting High Hole and Electron Mobilities in Ambient Air. Chemistry of Materials, 2013, 25, 59-68.	6.7	35

#	Article	IF	Citations
109	Controlling the Interaction of Light with Polymer Semiconductors. Advanced Materials, 2013, 25, 4906-4911.	21.0	42
110	Low band gap dithienogermolodithiophene copolymers with tunable acceptors and side-chains for organic solar cells. Journal of Materials Chemistry A, 2013, 1, 14973.	10.3	31
111	The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors–poly(3-hexylthiophene), a model study. Progress in Polymer Science, 2013, 38, 1978-1989.	24.7	274
112	Two-dimensional spatial coherence of excitons in semicrystalline polymeric semiconductors: Effect of molecular weight. Physical Review B, 2013, 88, .	3.2	96
113	Reversibly Slowing Dewetting of Conjugated Polymers by Light. Macromolecules, 2013, 46, 2352-2356.	4.8	26
114	Identifying the optimum composition in organic solar cells comprising non-fullerene electron acceptors. Journal of Materials Chemistry A, 2013, 1, 5989.	10.3	24
115	Influence of Solid-State Microstructure on the Electronic Performance of 5,11-Bis(triethylsilylethynyl) Anthradithiophene. Chemistry of Materials, 2013, 25, 1823-1828.	6.7	21
116	Microstructure formation in molecular and polymer semiconductors assisted by nucleation agents. Nature Materials, 2013, 12, 628-633.	27.5	131
117	Long-lived photoexcitations in intercalated, partially and predominantly non-intercalated polymer:fullerene blends. , 2013, , .		0
118	Controlling the solid-state microstructure of organic semiconducting materials by molecular compound formation. Journal of Organic Semiconductors, 2013, 1, 16-21.	1.2	3
119	Optical signatures of the interplay between intermolecular and intramolecular coupling in plastic semiconductors. Proceedings of SPIE, 2012, , .	0.8	0
120	Controllable Processes for Generating Large Single Crystals of Poly(3â€hexylthiophene). Angewandte Chemie - International Edition, 2012, 51, 11131-11135.	13.8	165
121	Ferroelectric Phase Diagram of PVDF:PMMA. Macromolecules, 2012, 45, 7477-7485.	4.8	99
122	Effects of a Heavy Atom on Molecular Order and Morphology in Conjugated Polymer:Fullerene Photovoltaic Blend Thin Films and Devices. ACS Nano, 2012, 6, 9646-9656.	14.6	70
123	Low band gap selenophene–diketopyrrolopyrrolepolymers exhibiting high and balanced ambipolar performance in bottom-gate transistors. Chemical Science, 2012, 3, 181-185.	7.4	169
124	Fullerenecrystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells. Chemical Science, 2012, 3, 485-492.	7.4	418
125	Effect of Multiple Adduct Fullerenes on Microstructure and Phase Behavior of P3HT:Fullerene Blend Films for Organic Solar Cells. ACS Nano, 2012, 6, 3868-3875.	14.6	58
126	Photo-Oriented Trisazobenzene Layers for Patterned Liquid-Crystal Alignment. Molecular Crystals and Liquid Crystals, 2012, 562, 133-140.	0.9	4

#	Article	IF	CITATIONS
127	Oneâ€pot synthesis of polymer/inorganic hybrids: toward readily accessible, lowâ€loss, and highly tunable refractive index materials and patterns. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 65-74.	2.1	32
128	The influence of solidâ€state microstructure on the origin and yield of longâ€lived photogenerated charge in neat semiconducting polymers. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 27-37.	2.1	101
129	On the phase behaviour of organic semiconductors. Polymer International, 2012, 61, 866-873.	3.1	41
130	Comparative Optoelectronic Study between Copolymers of Peripherally Alkylated Dithienosilole and Dithienogermole. Macromolecules, 2012, 45, 735-742.	4.8	42
131	Solution-processed small molecule transistors with low operating voltages and high grain-boundary anisotropy. Journal of Materials Chemistry, 2012, 22, 9458.	6.7	19
132	Processing and Low Voltage Switching of Organic Ferroelectric Phase eparated Bistable Diodes. Advanced Functional Materials, 2012, 22, 2750-2757.	14.9	52
133	Versatile Chromism of Titanium Oxide Hydrate/Poly(vinyl alcohol) Hybrid Systems. Advanced Materials, 2012, 24, 3015-3019.	21.0	4
134	Synthesis and charge transport studies of stable, soluble hexacenes. Chemical Communications, 2012, 48, 8261.	4.1	37
135	High permittivity dielectrics for poly(3-alkylthiophene) field-effect transistor devices. Organic Electronics, 2012, 13, 173-177.	2.6	1
136	Synthesis, Characterization, and Field Effect Transistor Properties of Regioregular Poly(3-alkyl-2,5-selenylenevinylene). Macromolecules, 2011, 44, 5194-5199.	4.8	49
137	Wire-bar coating of semiconducting polythiophene/insulating polyethylene blend thin films for organic transistors. Journal of Applied Physics, $2011,110,.$	2.5	38
138	Photo-induced molecular alignment of trisazobenzene derivatives. Journal of Materials Chemistry, 2011, 21, 4339.	6.7	17
139	Enhanced Charge-Carrier Mobility in High-Pressure-Crystallized Poly(3-hexylthiophene). Macromolecules, 2011, 44, 1221-1225.	4.8	56
140	Charge Separation in Semicrystalline Polymeric Semiconductors by Photoexcitation: Is the Mechanism Intrinsic or Extrinsic?. Physical Review Letters, 2011, 106, 197401.	7.8	118
141	Soluble fullerene derivatives: The effect of electronic structure on transistor performance and air stability. Journal of Applied Physics, $2011,110,110$	2.5	19
142	Influence of molecular architecture and processing on properties of semiconducting arylacetylene: Insulating poly(vinylidene fluoride) blends. Organic Electronics, 2011, 12, 1886-1892.	2.6	23
143	A low band gap co-polymer of dithienogermole and 2,1,3-benzothiadiazole by Suzuki polycondensation and its application in transistor and photovoltaic cells. Journal of Materials Chemistry, 2011, 21, 16257.	6.7	91
144	The role of alkane dithiols in controlling polymer crystallization in small band gap polymer:Fullerene solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 717-724.	2.1	73

#	Article	IF	Citations
145	Structural and Electrical Characterization of ZnO Films Grown by Spray Pyrolysis and Their Application in Thinâ€Film Transistors. Advanced Functional Materials, 2011, 21, 525-531.	14.9	100
146	In-Situ Monitoring of the Solid-State Microstructure Evolution of Polymer:Fullerene Blend Films Using Field-Effect Transistors. Advanced Functional Materials, 2011, 21, 356-363.	14.9	37
147	Spinodal Decomposition of Blends of Semiconducting and Ferroelectric Polymers. Advanced Functional Materials, 2011, 21, 1887-1894.	14.9	58
148	Organic Semiconductor:Insulator Polymer Ternary Blends for Photovoltaics. Advanced Materials, 2011, 23, 4093-4097.	21.0	77
149	Percolation behaviour in high mobility p-channel polymer/small-molecule blend organic field-effect transistors. Organic Electronics, 2011, 12, 143-147.	2.6	46
150	Single-step solution processing of small-molecule organic semiconductor field-effect transistors at high yield. Applied Physics Letters, 2011, 99, .	3.3	16
151	Crossbar memory array of organic bistable rectifying diodes for nonvolatile data storage. Applied Physics Letters, 2010, 97, .	3.3	60
152	Organic Semiconductor Growth and Morphology Considerations for Organic Thinâ€Film Transistors. Advanced Materials, 2010, 22, 3857-3875.	21.0	451
153	Solidâ€State Processing of Organic Semiconductors. Advanced Materials, 2010, 22, 3942-3947.	21.0	46
154	Sprayâ€Deposited Liâ€Doped ZnO Transistors with Electron Mobility Exceeding 50 cm ² /Vs. Advanced Materials, 2010, 22, 4764-4769.	21.0	105
155	Apatite Deposition on NaOHâ€Treated PEEK and UHMWPE Films for Sclera Materials in Artificial Cornea Implants. Advanced Engineering Materials, 2010, 12, B234.	3.5	5
156	Low-temperature printing of crystalline:crystalline polymer blend transistors. Organic Electronics, 2010, 11, 1296-1300.	2.6	15
157	Stable Holographic Gratings with Small-Molecular Trisazobenzene Derivatives. Journal of the American Chemical Society, 2010, 132, 509-516.	13.7	70
158	Bulk charge transport in liquid-crystalline polymer semiconductors based on poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene). Polymer Chemistry, 2010, 1, 1448.	3.9	10
159	Understanding the Influence of Morphology on Poly(3-hexylselenothiophene):PCBM Solar Cells. Macromolecules, 2010, 43, 1169-1174.	4.8	92
160	Pronounced photochromism of titanium oxide hydrates (hydrous TiO ₂). Journal of Materials Chemistry, 2010, 20, 1348-1356.	6.7	34
161	Role of Ultrafast Torsional Relaxation in the Emission from Polythiophene Aggregates. Journal of Physical Chemistry Letters, 2010, 1, 2788-2792.	4.6	90
162	Solution-processed organic transistors based on semiconducting blends. Journal of Materials Chemistry, 2010, 20, 2562.	6.7	201

#	Article	IF	Citations
163	Ink-jet printed p-type polymer electronics based on liquid-crystalline polymer semiconductors. Journal of Materials Chemistry, 2010, 20, 1927.	6.7	41
164	Separate charge transport pathways determined by the time of flight method in bimodal polytriarylamine. Journal of Applied Physics, 2009, 105, .	2.5	29
165	Efficient, Stable <i>Bulk</i> Charge Transport in Crystalline/Crystalline Semiconductor–Insulator Blends. Advanced Materials, 2009, 21, 4447-4451.	21.0	77
166	Electrical contacts. Nature Materials, 2009, 8, 858-860.	27.5	7
167	Nucleation and growth of apatite on NaOH-treated PEEK, HDPE and UHMWPE for artificial cornea materials. Acta Biomaterialia, 2008, 4, 1827-1836.	8.3	69
168	Crystalline–crystalline poly(3-hexylthiophene)–polyethylene diblock copolymers: Solidification from the melt. Polymer, 2008, 49, 3973-3978.	3.8	34
169	Binary Organic Photovoltaic Blends: A Simple Rationale for Optimum Compositions. Advanced Materials, 2008, 20, 3510-3515.	21.0	364
170	Complexity made simple. Nature Materials, 2008, 7, 171-172.	27.5	14
171	Reduced hole mobility due to the presence of excited states in poly-(3-hexylthiophene). Applied Physics Letters, 2008, 93, 233306.	3.3	18
172	α-Quaterthiophene–polyethylene blends: Phase behaviour and electronic properties. Synthetic Metals, 2007, 157, 827-833.	3.9	28
173	Tough, Semiconducting Polyethyleneâ€poly(3â€hexylthiophene) Diblock Copolymers. Advanced Functional Materials, 2007, 17, 2674-2679.	14.9	201
174	Control of Ambipolar Thin Film Architectures by Co-Self-Assembling Oligo(p-phenylenevinylene)s and Perylene Bisimides. Journal of the American Chemical Society, 2006, 128, 9535-9540.	13.7	154
175	Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold. Nature Materials, 2006, 5, 950-956.	27.5	302
176	Magnus' Green Salt Revisited: Impact of Platinum–Platinum Interactions on Electronic Structure and Carrier Mobilities. Advanced Materials, 2006, 18, 2039-2043.	21.0	24
177	Organic thin-film electronics from vitreous solution-processed rubrene hypereutectics. Nature Materials, 2005, 4, 601-606.	27.5	246
178	High Anisotropy of the Field-Effect Transistor Mobility in Magnetically Aligned Discotic Liquid-Crystalline Semiconductors. Journal of the American Chemical Society, 2005, 127, 16233-16237.	13.7	197
179	Crystallineâ^'Crystalline Block Copolymers of Regioregular Poly(3-hexylthiophene) and Polyethylene by Ring-Opening Metathesis Polymerization. Journal of the American Chemical Society, 2005, 127, 12502-12503.	13.7	155
180	Optoelectronic Properties of Quasi-Linear, Self-Assembled Platinum Complexes: Pt–Pt Distance Dependence. Advanced Functional Materials, 2004, 14, 323-328.	14.9	29

#	Article	IF	Citations
181	Aligned Thin Films of Discotic Hexabenzocoronenes: Anisotropy in the Optical and Charge Transport Properties. Advanced Functional Materials, 2004, 14, 1053-1061.	14.9	68
182	Growth and anisotropic properties of highly oriented films of quasi-one-dimensional platinum compounds. Thin Solid Films, 2004, 449, 34-39.	1.8	4
183	Induced Alignment of a Solution-Cast Discotic Hexabenzocoronene Derivative for Electronic Devices Investigated by Surface X-ray Diffraction. Journal of the American Chemical Society, 2003, 125, 2252-2258.	13.7	109
184	Highly Anisotropic Opto-electronic Properties of Aligned Films of Self-Assembled Platinum Molecular Wires. Advanced Materials, 2003, 15, 896-899.	21.0	15
185	Anisotropy in the Mobility and Photogeneration of Charge Carriers in Thin Films of Discotic Hexabenzocoronenes, Columnarly Self-Assembled on Friction-Deposited Poly(tetrafluoroethylene). Advanced Materials, 2003, 15, 1736-1740.	21.0	56
186	"(Hot-)Water-Proofâ€; Semiconducting, Platinum-Based Chain Structures: Processing, Products, and Properties. Advanced Materials, 2003, 15, 125-129.	21.0	84
187	Meso-Epitaxial Solution-Growth of Self-Organizing Discotic Liquid-Crystalline Semiconductors. Advanced Materials, 2003, 15, 495-499.	21.0	453
188	Self-Aligned, Vertical-Channel, Polymer Field-Effect Transistors. Science, 2003, 299, 1881-1884.	12.6	514
189	Microembossing of Elastomeric Triblock Copolymers. Advanced Materials, 2002, 14, 47-51.	21.0	26
190	Microcutting Materials on Polymer Substrates. Advanced Functional Materials, 2002, 12, 105-109.	14.9	21
191	Novel Polarized-Light Emitting Polymer Systems: II. Use of Form Birefringent Polarization-Selective Mirrors. Japanese Journal of Applied Physics, 2001, 40, 5972-5975.	1.5	1
192	Novel Polarized-Light Emitting Polymer Systems. Japanese Journal of Applied Physics, 2001, 40, 5966-5971.	1.5	1
193	Solid-State Replication of Relief Structures in Semicrystalline Polymers. Advanced Materials, 2000, 12, 557-562.	21.0	53
194	New polyamides with long alkane segments: nylon 6.24 and 6.34. Polymer, 2000, 41, 3531-3539.	3.8	42
195	The hole in the bucky: structure-property mapping of closed- vs. open-cage fullerene solar-cell blends via temperature/composition phase diagrams. Journal of Materials Chemistry C, 0, , .	5.5	2
196	Towards Metallic-Type Transport in Polymers: Establishing Structure/Property Interrelationships. , 0, , .		0
197	Optoelectronic Landscape of Polymer Semiconductors in High-k Surroundings. , 0, , .		0
198	Beneficial Interaction between nickel oxide nanoparticles and polyethylene oxide as printable nanocomposite hole injection layer for organic solar cells. , 0, , .		0

#	Article	IF	CITATIONS
199	Managing Local Order in Conjugated Polymer Blends via Polarity Contrast. , 0, , .		O
200	How Can We Engineer Hierarchical Structures and Pattern Functional Organic Materials?. , 0, , .		0
201	CHAPTER 6. Structure/Property/Processing Relationships for Organic Solar Cells. RSC Nanoscience and Nanotechnology, 0, , 182-225.	0.2	O