Natalie Stingelin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3072553/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nature Materials, 2013, 12, 1038-1044.	27.5	1,742
2	Multi-phase microstructures drive exciton dissociation in neat semicrystalline polymeric semiconductors. Journal of Materials Chemistry C, 2015, 3, 10715-10722.	5.5	689
3	Self-Aligned, Vertical-Channel, Polymer Field-Effect Transistors. Science, 2003, 299, 1881-1884.	12.6	514
4	Meso-Epitaxial Solution-Growth of Self-Organizing Discotic Liquid-Crystalline Semiconductors. Advanced Materials, 2003, 15, 495-499.	21.0	453
5	Organic Semiconductor Growth and Morphology Considerations for Organic Thinâ€Film Transistors. Advanced Materials, 2010, 22, 3857-3875.	21.0	451
6	Fullerenecrystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells. Chemical Science, 2012, 3, 485-492.	7.4	418
7	Binary Organic Photovoltaic Blends: A Simple Rationale for Optimum Compositions. Advanced Materials, 2008, 20, 3510-3515.	21.0	364
8	Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold. Nature Materials, 2006, 5, 950-956.	27.5	302
9	The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors–poly(3-hexylthiophene), a model study. Progress in Polymer Science, 2013, 38, 1978-1989.	24.7	274
10	Organic thin-film electronics from vitreous solution-processed rubrene hypereutectics. Nature Materials, 2005, 4, 601-606.	27.5	246
11	Tough, Semiconducting Polyethyleneâ€poly(3â€hexylthiophene) Diblock Copolymers. Advanced Functional Materials, 2007, 17, 2674-2679.	14.9	201
12	Solution-processed organic transistors based on semiconducting blends. Journal of Materials Chemistry, 2010, 20, 2562.	6.7	201
13	High Anisotropy of the Field-Effect Transistor Mobility in Magnetically Aligned Discotic Liquid-Crystalline Semiconductors. Journal of the American Chemical Society, 2005, 127, 16233-16237.	13.7	197
14	Toward Stretchable Selfâ€Powered Sensors Based on the Thermoelectric Response of PEDOT:PSS/Polyurethane Blends. Advanced Functional Materials, 2018, 28, 1704285.	14.9	171
15	Low band gap selenophene–diketopyrrolopyrrolepolymers exhibiting high and balanced ambipolar performance in bottom-gate transistors. Chemical Science, 2012, 3, 181-185.	7.4	169
16	Controllable Processes for Generating Large Single Crystals of Poly(3â€hexylthiophene). Angewandte Chemie - International Edition, 2012, 51, 11131-11135.	13.8	165
17	On the role of intermixed phases in organic photovoltaic blends. Energy and Environmental Science, 2013, 6, 2756.	30.8	157
18	Crystallineâ^'Crystalline Block Copolymers of Regioregular Poly(3-hexylthiophene) and Polyethylene by Ring-Opening Metathesis Polymerization. Journal of the American Chemical Society, 2005, 127, 12502-12503.	13.7	155

#	Article	lF	CITATIONS
19	Control of Ambipolar Thin Film Architectures by Co-Self-Assembling Oligo(p-phenylenevinylene)s and Perylene Bisimides. Journal of the American Chemical Society, 2006, 128, 9535-9540.	13.7	154
20	Direct observation of ultrafast long-range charge separation at polymer–fullerene heterojunctions. Nature Communications, 2014, 5, 4288.	12.8	140
21	Highâ€Efficiency Organic Photovoltaic Cells Based on the Solutionâ€Processable Hole Transporting Interlayer Copper Thiocyanate (CuSCN) as a Replacement for PEDOT:PSS. Advanced Energy Materials, 2015, 5, 1401529.	19.5	133
22	Microstructure formation in molecular and polymer semiconductors assisted by nucleation agents. Nature Materials, 2013, 12, 628-633.	27.5	131
23	Charge Separation in Semicrystalline Polymeric Semiconductors by Photoexcitation: Is the Mechanism Intrinsic or Extrinsic?. Physical Review Letters, 2011, 106, 197401.	7.8	118
24	A Novel Alkylated Indacenodithieno[3,2â€b]thiopheneâ€Based Polymer for Highâ€Performance Fieldâ€Effect Transistors. Advanced Materials, 2016, 28, 3922-3927.	21.0	117
25	Induced Alignment of a Solution-Cast Discotic Hexabenzocoronene Derivative for Electronic Devices Investigated by Surface X-ray Diffraction. Journal of the American Chemical Society, 2003, 125, 2252-2258.	13.7	109
26	Sprayâ€Deposited Liâ€Doped ZnO Transistors with Electron Mobility Exceeding 50 cm ² /Vs. Advanced Materials, 2010, 22, 4764-4769.	21.0	105
27	The influence of solidâ€state microstructure on the origin and yield of longâ€lived photogenerated charge in neat semiconducting polymers. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 27-37.	2.1	101
28	Structural and Electrical Characterization of ZnO Films Grown by Spray Pyrolysis and Their Application in Thinâ \in Film Transistors. Advanced Functional Materials, 2011, 21, 525-531.	14.9	100
29	Ferroelectric Phase Diagram of PVDF:PMMA. Macromolecules, 2012, 45, 7477-7485.	4.8	99
30	Two-dimensional spatial coherence of excitons in semicrystalline polymeric semiconductors: Effect of molecular weight. Physical Review B, 2013, 88, .	3.2	96
31	Semiconducting:insulating polymer blends for optoelectronic applications—a review of recent advances. Journal of Materials Chemistry A, 2014, 2, 10818-10824.	10.3	93
32	Understanding the Influence of Morphology on Poly(3-hexylselenothiophene):PCBM Solar Cells. Macromolecules, 2010, 43, 1169-1174.	4.8	92
33	A low band gap co-polymer of dithienogermole and 2,1,3-benzothiadiazole by Suzuki polycondensation and its application in transistor and photovoltaic cells. Journal of Materials Chemistry, 2011, 21, 16257.	6.7	91
34	Role of Ultrafast Torsional Relaxation in the Emission from Polythiophene Aggregates. Journal of Physical Chemistry Letters, 2010, 1, 2788-2792.	4.6	90
35	Influence of Molecular Conformations and Microstructure on the Optoelectronic Properties of Conjugated Polymers. Materials, 2014, 7, 2273-2300.	2.9	90
36	2,1,3â€Benzothiadiazoleâ€5,6â€Dicarboxylic Imide – A Versatile Building Block for Additive―and Annealingâ€ Processing of Organic Solar Cells with Efficiencies Exceeding 8%. Advanced Materials, 2015, 27, 948-953.	Free 21.0	88

#	Article	IF	CITATIONS
37	Light absorption of poly(3-hexylthiophene) single crystals. RSC Advances, 2014, 4, 11121-11123.	3.6	85
38	"(Hot-)Water-Proofâ€; Semiconducting, Platinum-Based Chain Structures: Processing, Products, and Properties. Advanced Materials, 2003, 15, 125-129.	21.0	84
39	Organic Gelators as Growth Control Agents for Stable and Reproducible Hybrid Perovskiteâ€Based Solar Cells. Advanced Energy Materials, 2017, 7, 1602600.	19.5	78
40	Efficient, Stable <i>Bulk</i> Charge Transport in Crystalline/Crystalline Semiconductor–Insulator Blends. Advanced Materials, 2009, 21, 4447-4451.	21.0	77
41	Organic Semiconductor:Insulator Polymer Ternary Blends for Photovoltaics. Advanced Materials, 2011, 23, 4093-4097.	21.0	77
42	A Close Look at Charge Generation in Polymer:Fullerene Blends with Microstructure Control. Journal of the American Chemical Society, 2015, 137, 2908-2918.	13.7	75
43	Entanglements in marginal solutions: a means of tuning pre-aggregation of conjugated polymers with positive implications for charge transport. Journal of Materials Chemistry C, 2015, 3, 7394-7404.	5.5	75
44	The role of alkane dithiols in controlling polymer crystallization in small band gap polymer:Fullerene solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 717-724.	2.1	73
45	Highly efficient photochemical upconversion in a quasi-solid organogel. Journal of Materials Chemistry C, 2015, 3, 616-622.	5.5	72
46	Stable Holographic Gratings with Small-Molecular Trisazobenzene Derivatives. Journal of the American Chemical Society, 2010, 132, 509-516.	13.7	70
47	Effects of a Heavy Atom on Molecular Order and Morphology in Conjugated Polymer:Fullerene Photovoltaic Blend Thin Films and Devices. ACS Nano, 2012, 6, 9646-9656.	14.6	70
48	Nucleation and growth of apatite on NaOH-treated PEEK, HDPE and UHMWPE for artificial cornea materials. Acta Biomaterialia, 2008, 4, 1827-1836.	8.3	69
49	Aligned Thin Films of Discotic Hexabenzocoronenes: Anisotropy in the Optical and Charge Transport Properties. Advanced Functional Materials, 2004, 14, 1053-1061.	14.9	68
50	The fate of electron–hole pairs in polymer:fullerene blends for organic photovoltaics. Nature Communications, 2016, 7, 12556.	12.8	68
51	Fullerene Nucleating Agents: A Route Towards Thermally Stable Photovoltaic Blends. Advanced Energy Materials, 2014, 4, 1301437.	19.5	65
52	Role of Sideâ€Chain Branching on Thinâ€Film Structure and Electronic Properties of Polythiophenes. Advanced Functional Materials, 2015, 25, 2616-2624.	14.9	65
53	Direct Calorimetric Observation of the Rigid Amorphous Fraction in a Semiconducting Polymer. Journal of Physical Chemistry Letters, 2018, 9, 990-995.	4.6	61
54	Crossbar memory array of organic bistable rectifying diodes for nonvolatile data storage. Applied Physics Letters, 2010, 97, .	3.3	60

#	Article	IF	CITATIONS
55	Using Molecular Design to Increase Hole Transport: Backbone Fluorination in the Benchmark Material		
_			

#	Article	IF	CITATIONS
73	The influence of polymer purification on the efficiency of poly(3-hexylthiophene):fullerene organic solar cells. Scientific Reports, 2016, 6, 23651.	3.3	44
74	Use of a commercially available nucleating agent to control the morphological development of solution-processed small molecule bulk heterojunction organic solar cells. Journal of Materials Chemistry A, 2014, 2, 15717-15721.	10.3	43
75	Solid-state-processing of δ-PVDF. Materials Horizons, 2017, 4, 408-414.	12.2	43
76	New polyamides with long alkane segments: nylon 6.24 and 6.34. Polymer, 2000, 41, 3531-3539.	3.8	42
77	Comparative Optoelectronic Study between Copolymers of Peripherally Alkylated Dithienosilole and Dithienogermole. Macromolecules, 2012, 45, 735-742.	4.8	42
78	Controlling the Interaction of Light with Polymer Semiconductors. Advanced Materials, 2013, 25, 4906-4911.	21.0	42
79	Regio-Regular Oligo and Poly(3-hexyl thiophene): Precise Structural Markers from the Vibrational Spectra of Oligomer Single Crystals Macromolecules, 2014, 47, 6730-6739.	4.8	42
80	Molecular weight dependence of carrier mobility and recombination rate in neat P3HT films. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 31-35.	2.1	42
81	Ink-jet printed p-type polymer electronics based on liquid-crystalline polymer semiconductors. Journal of Materials Chemistry, 2010, 20, 1927.	6.7	41
82	On the phase behaviour of organic semiconductors. Polymer International, 2012, 61, 866-873.	3.1	41
83	Tailoring the void space and mechanical properties in electrospun scaffolds towards physiological ranges. Journal of Materials Chemistry B, 2014, 2, 305-313.	5.8	40
84	Wire-bar coating of semiconducting polythiophene/insulating polyethylene blend thin films for organic transistors. Journal of Applied Physics, 2011, 110, .	2.5	38
85	The Power of Materials Science Tools for Gaining Insights into Organic Semiconductors. Annual Review of Materials Research, 2015, 45, 459-490.	9.3	38
86	What is Killing Organic Photovoltaics: Lightâ€Induced Crosslinking as a General Degradation Pathway of Organic Conjugated Molecules. Advanced Energy Materials, 2020, 10, 1903163.	19.5	38
87	In-Situ Monitoring of the Solid-State Microstructure Evolution of Polymer:Fullerene Blend Films Using Field-Effect Transistors. Advanced Functional Materials, 2011, 21, 356-363.	14.9	37
88	Synthesis and charge transport studies of stable, soluble hexacenes. Chemical Communications, 2012, 48, 8261.	4.1	37
89	Thermoelectric Materials: A Brief Historical Survey from Metal Junctions and Inorganic Semiconductors to Organic Polymers. Israel Journal of Chemistry, 2014, 54, 534-552.	2.3	37
90	Near Infrared Absorbing Soluble Poly(cyclopenta[2,1-b:3,4-bâ€2]dithiophen-4-one)vinylene Polymers Exhibiting High Hole and Electron Mobilities in Ambient Air. Chemistry of Materials, 2013, 25, 59-68.	6.7	35

#	Article	IF	CITATIONS
91	Enhancing the Photoluminescence Emission of Conjugated MEH-PPV by Light Processing. ACS Applied Materials & Interfaces, 2014, 6, 4974-4979.	8.0	35
92	Crystalline–crystalline poly(3-hexylthiophene)–polyethylene diblock copolymers: Solidification from the melt. Polymer, 2008, 49, 3973-3978.	3.8	34
93	Pronounced photochromism of titanium oxide hydrates (hydrous TiO ₂). Journal of Materials Chemistry, 2010, 20, 1348-1356.	6.7	34
94	Controlling aggregate formation in conjugated polymers by spinâ€coating below the critical temperature of the disorder–order transition. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 532-542.	2.1	34
95	Thermochromic Latentâ€Pigmentâ€Based Time–Temperature Indicators for Perishable Goods. Advanced Optical Materials, 2015, 3, 1164-1168.	7.3	33
96	Effects of Counterâ€ion Size on Delocalization of Carriers and Stability of Doped Semiconducting Polymers. Advanced Electronic Materials, 2020, 6, 2000595.	5.1	33
97	A Low‣welling Polymeric Mixed Conductor Operating in Aqueous Electrolytes. Advanced Materials, 2021, 33, e2005723.	21.0	33
98	Polymorphism in Nonâ€Fullerene Acceptors Based on Indacenodithienothiophene. Advanced Functional Materials, 2021, 31, 2103784.	14.9	33
99	Oneâ€pot synthesis of polymer/inorganic hybrids: toward readily accessible, lowâ€loss, and highly tunable refractive index materials and patterns. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 65-74.	2.1	32
100	Low band gap dithienogermolodithiophene copolymers with tunable acceptors and side-chains for organic solar cells. Journal of Materials Chemistry A, 2013, 1, 14973.	10.3	31
101	The Importance of Materials Design to Make Ions Flow: Toward Novel Materials Platforms for Bioelectronics Applications. Advanced Materials, 2017, 29, 1604446.	21.0	31
102	Nanocomposite of nickel oxide nanoparticles and polyethylene oxide as printable hole transport layer for organic solar cells. Sustainable Energy and Fuels, 2019, 3, 1418-1426.	4.9	31
103	Microstructural control suppresses thermal activation of electron transport at room temperature in polymer transistors. Nature Communications, 2019, 10, 3365.	12.8	30
104	Optoelectronic Properties of Quasi-Linear, Self-Assembled Platinum Complexes: Pt–Pt Distance Dependence. Advanced Functional Materials, 2004, 14, 323-328.	14.9	29
105	Separate charge transport pathways determined by the time of flight method in bimodal polytriarylamine. Journal of Applied Physics, 2009, 105, .	2.5	29
106	Origin of fullerene-induced vitrification of fullerene:donor polymer photovoltaic blends and its impact on solar cell performance. Journal of Materials Chemistry A, 2017, 5, 2689-2700.	10.3	29
107	α-Quaterthiophene–polyethylene blends: Phase behaviour and electronic properties. Synthetic Metals, 2007, 157, 827-833.	3.9	28
108	Effects of Side-Chain Length and Shape on Polytellurophene Molecular Order and Blend Morphology. Journal of Physical Chemistry C, 2017, 121, 2088-2098.	3.1	28

#	Article	IF	CITATIONS
109	Microembossing of Elastomeric Triblock Copolymers. Advanced Materials, 2002, 14, 47-51.	21.0	26
110	Reversibly Slowing Dewetting of Conjugated Polymers by Light. Macromolecules, 2013, 46, 2352-2356.	4.8	26
111	Spectroscopic Evaluation of Mixing and Crystallinity of Fullerenes in Bulk Heterojunctions. Advanced Functional Materials, 2014, 24, 6972-6980.	14.9	26
112	Solution processing of polymer semiconductor: Insulator blends—Tailored optical properties through liquid–liquid phase separation control. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 304-310.	2.1	25
113	Elucidating the Influence of Side-Chain Circular Distribution on the Crack Onset Strain and Hole Mobility of Near-Amorphous Indacenodithiophene Copolymers. Macromolecules, 2020, 53, 7511-7518.	4.8	25
114	Magnus' Green Salt Revisited: Impact of Platinum–Platinum Interactions on Electronic Structure and Carrier Mobilities. Advanced Materials, 2006, 18, 2039-2043.	21.0	24
115	Identifying the optimum composition in organic solar cells comprising non-fullerene electron acceptors. Journal of Materials Chemistry A, 2013, 1, 5989.	10.3	24
116	Altering the emission properties of conjugated polymers. Polymer International, 2016, 65, 157-163.	3.1	24
117	Influence of molecular architecture and processing on properties of semiconducting arylacetylene: Insulating poly(vinylidene fluoride) blends. Organic Electronics, 2011, 12, 1886-1892.	2.6	23
118	Alternating Copolymers Incorporating Dithienogemolodithiophene for Field-Effect Transistor Applications. Macromolecules, 2014, 47, 8602-8610.	4.8	23
119	Polytellurophenes provide imaging contrast towards unravelling the structure–property–function relationships in semiconductor:insulator polymer blends. Journal of Materials Chemistry C, 2015, 3, 3767-3773.	5.5	23
120	Emission properties of MEH-PPV in thin films simultaneously illuminated and annealed at different temperatures. Synthetic Metals, 2015, 199, 33-36.	3.9	23
121	Relaxations and Relaxor-Ferroelectric-Like Response of Nanotubularly Confined Poly(vinylidene) Tj ETQq1 1 0.784	1314 rgBT 6.7	/Overlock 10
122	The effect of phase morphology on the nature of long-lived charges in semiconductor polymer:fullerene systems. Journal of Materials Chemistry C, 2015, 3, 3722-3729.	5.5	22
123	Decoupling Charge Transport and Electroluminescence in a High Mobility Polymer Semiconductor. Advanced Materials, 2016, 28, 6378-6385.	21.0	22
124	Microcutting Materials on Polymer Substrates. Advanced Functional Materials, 2002, 12, 105-109.	14.9	21
125	Influence of Solid-State Microstructure on the Electronic Performance of 5,11-Bis(triethylsilylethynyl) Anthradithiophene. Chemistry of Materials, 2013, 25, 1823-1828.	6.7	21
126	Designing Small Molecules as Ternary Energy-Cascade Additives for Polymer:Fullerene Solar Cell Blends. Chemistry of Materials, 2018, 30, 2213-2217.	6.7	21

#	Article	IF	CITATIONS
127	Scalable syntheses of well-defined pentadecablock bipolymer and quintopolymer. Polymer Chemistry, 2018, 9, 3450-3454.	3.9	21
128	The Importance of Quantifying the Composition of the Amorphous Intermixed Phase in Organic Solar Cells. Advanced Materials, 2020, 32, e2005241.	21.0	21
129	Enhanced Electrocaloric Response of Vinylidene Fluoride–Based Polymers via One‣tep Molecular Engineering. Advanced Functional Materials, 2021, 31, .	14.9	21
130	Managing Local Order in Conjugated Polymer Blends via Polarity Contrast. Chemistry of Materials, 2019, 31, 6540-6547.	6.7	20
131	The Role of Morphology in Optically Switchable Transistors Based on a Photochromic Molecule/pâ€Type Polymer Semiconductor Blend. Advanced Functional Materials, 2020, 30, 1907507.	14.9	20
132	Soluble fullerene derivatives: The effect of electronic structure on transistor performance and air stability. Journal of Applied Physics, 2011, 110, .	2.5	19
133	Solution-processed small molecule transistors with low operating voltages and high grain-boundary anisotropy. Journal of Materials Chemistry, 2012, 22, 9458.	6.7	19
134	Benzocarborano[2,1- <i>b</i> :3,4- <i>b</i> ′]dithiophene Containing Conjugated Polymers: Synthesis, Characterization, and Optoelectronic Properties. Macromolecules, 2014, 47, 89-96.	4.8	19
135	On the Effect of Confinement on the Structure and Properties of Smallâ€Molecular Organic Semiconductors. Advanced Electronic Materials, 2018, 4, 1700308.	5.1	19
136	Reduced hole mobility due to the presence of excited states in poly-(3-hexylthiophene). Applied Physics Letters, 2008, 93, 233306.	3.3	18
137	Convective self-assembly of π-conjugated oligomers and polymers. Journal of Materials Chemistry C, 2017, 5, 2513-2518.	5.5	18
138	Correlating Crystal Thickness, Surface Morphology, and Charge Transport in Pristine and Doped Rubrene Single Crystals. ACS Applied Materials & Interfaces, 2018, 10, 26745-26751.	8.0	18
139	Photo-induced molecular alignment of trisazobenzene derivatives. Journal of Materials Chemistry, 2011, 21, 4339.	6.7	17
140	Diels–Alders adducts of C ₆₀ and esters of 3-(1-indenyl)-propionic acid: alternatives for [60]PCBM in polymer:fullerene solar cells. Chemical Communications, 2015, 51, 8126-8129.	4.1	17
141	Room temperature dielectric bistability in solution-processed spin crossover polymer thin films. Journal of Materials Chemistry C, 2016, 4, 6240-6248.	5.5	17
142	Excitonic coupling dominates the homogeneous photoluminescence excitation linewidth in semicrystalline polymeric semiconductors. Physical Review B, 2017, 95, .	3.2	17
143	Temperature-Dependence of Persistence Length Affects Phenomenological Descriptions of Aligning Interactions in Nematic Semiconducting Polymers. Chemistry of Materials, 2018, 30, 748-761.	6.7	17
144	Single-step solution processing of small-molecule organic semiconductor field-effect transistors at high yield. Applied Physics Letters, 2011, 99, .	3.3	16

#	Article	IF	CITATIONS
145	Highly Anisotropic Opto-electronic Properties of Aligned Films of Self-Assembled Platinum Molecular Wires. Advanced Materials, 2003, 15, 896-899.	21.0	15
146	Low-temperature printing of crystalline:crystalline polymer blend transistors. Organic Electronics, 2010, 11, 1296-1300.	2.6	15
147	Control of polythiophene film microstructure and charge carrier dynamics through crystallization temperature. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 700-707.	2.1	15
148	Terahertz short-range mobilities in neat and intermixed regions of polymer:fullerene blends with controlled phase morphology. Journal of Materials Chemistry A, 2018, 6, 22301-22309.	10.3	15
149	High-density polyethylene—an inert additive with stabilizing effects on organic field-effect transistors. Journal of Materials Chemistry C, 2020, 8, 15406-15415.	5.5	15
150	Toward Fast Screening of Organic Solar Cell Blends. Advanced Science, 2020, 7, 2000960.	11.2	15
151	Complexity made simple. Nature Materials, 2008, 7, 171-172.	27.5	14
152	Fully Solutionâ€Processed Photonic Structures from Inorganic/Organic Molecular Hybrid Materials and Commodity Polymers. Advanced Functional Materials, 2019, 29, 1808152.	14.9	14
153	Microstructured organic ferroelectric thin film capacitors by solution micromolding. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2124-2132.	1.8	13
154	Confinement effects on the crystalline features of poly(9,9-dioctylfluorene). European Polymer Journal, 2016, 81, 650-660.	5.4	13
155	In Situ Studies of the Swelling by an Electrolyte in Electrochemical Doping of Ethylene Glycol-Substituted Polythiophene. ACS Applied Materials & Interfaces, 2022, 14, 29052-29060.	8.0	13
156	Biodegradable fibre scaffolds incorporating water-soluble drugs and proteins. Journal of Materials Science: Materials in Medicine, 2015, 26, 205.	3.6	12
157	Solution-processing of semiconducting organic small molecules: what we have learnt from 5,11-bis(triethylsilylethynyl)anthradithiophene. Journal of Materials Chemistry C, 2021, 9, 10547-10556.	5.5	11
158	An Informatics Approach for Designing Conducting Polymers. ACS Applied Materials & Interfaces, 2021, 13, 53314-53322.	8.0	11
159	Conjugated Polymer Mesocrystals with Structural and Optoelectronic Coherence and Anisotropy in Three Dimensions. Advanced Materials, 2022, 34, e2103002.	21.0	11
160	Bulk charge transport in liquid-crystalline polymer semiconductors based on poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene). Polymer Chemistry, 2010, 1, 1448.	3.9	10
161	Bis(triisopropylsilylethynyl)pentacene/Au(111) Interface: Coupling, Molecular Orientation, and Thermal Stability. Journal of Physical Chemistry C, 2014, 118, 22522-22532.	3.1	10
162	Tailoring the optical properties of poly(3-hexylthiophene) by emulsion processing using polymeric macrosurfactants. Journal of Materials Chemistry C, 2015, 3, 2065-2071.	5.5	10

#	Article	IF	CITATIONS
163	Frenkel biexcitons in hybrid HJ photophysical aggregates. Science Advances, 2021, 7, eabi5197.	10.3	10
164	Providing a Window into the Phase Behavior of Semiconducting Polymers. Macromolecules, 2021, 54, 5304-5320.	4.8	9
165	Synthesis and properties of a novel narrow band gap oligomeric diketopyrrolopyrrole-based organic semiconductor. Dyes and Pigments, 2016, 131, 160-167.	3.7	8
166	Improving molecular alignment and charge percolation in semiconducting polymer films with highly localized electronic states through tailored thermal annealing. Journal of Materials Chemistry C, 2021, 9, 15848-15857.	5.5	8
167	Electrical contacts. Nature Materials, 2009, 8, 858-860.	27.5	7
168	New 3,3′-(ethane-1,2-diylidene)bis(indolin-2-one) (EBI)-based small molecule semiconductors for organic solar cells. Journal of Materials Chemistry C, 2017, 5, 5143-5153.	5.5	6
169	Understanding hierarchical spheres-in-grating assembly for bio-inspired colouration. Materials Horizons, 2021, 8, 2230-2237.	12.2	6
170	Apatite Deposition on NaOHâ€Treated PEEK and UHMWPE Films for Sclera Materials in Artificial Cornea Implants. Advanced Engineering Materials, 2010, 12, B234.	3.5	5
171	Growth and anisotropic properties of highly oriented films of quasi-one-dimensional platinum compounds. Thin Solid Films, 2004, 449, 34-39.	1.8	4
172	Photo-Oriented Trisazobenzene Layers for Patterned Liquid-Crystal Alignment. Molecular Crystals and Liquid Crystals, 2012, 562, 133-140.	0.9	4
173	Versatile Chromism of Titanium Oxide Hydrate/Poly(vinyl alcohol) Hybrid Systems. Advanced Materials, 2012, 24, 3015-3019.	21.0	4
174	Controlling the Solidification of Organic Photovoltaic Blends with Nucleating Agents. Organic Photonics and Photovoltaics, 2014, 2, .	1.3	4
175	Planar refractive index patterning through microcontact photo-thermal annealing of a printable organic/inorganic hybrid material. Materials Horizons, 2022, 9, 411-416.	12.2	4
176	Controlling the solid-state microstructure of organic semiconducting materials by molecular compound formation. Journal of Organic Semiconductors, 2013, 1, 16-21.	1.2	3
177	Effects of alkyl chain positioning on conjugated polymer microstructure and field-effect mobilities. MRS Communications, 2015, 5, 435-440.	1.8	2
178	Robust Processing of Small-Molecule:Fullerene Organic Solar Cells via Use of Nucleating Agents. ACS Applied Energy Materials, 2018, 1, 1973-1980.	5.1	2
179	The hole in the bucky: structure-property mapping of closed- vs. open-cage fullerene solar-cell blends via temperature/composition phase diagrams. Journal of Materials Chemistry C, 0, , .	5.5	2
180	Terminology of polymers in advanced lithography (IUPAC Recommendations 2020). Pure and Applied Chemistry, 2020, 92, 1861-1891.	1.9	2

7	#	Article	IF	CITATIONS
-	181	Novel Polarized-Light Emitting Polymer Systems: II. Use of Form Birefringent Polarization-Selective Mirrors. Japanese Journal of Applied Physics, 2001, 40, 5972-5975.	1.5	1
1	182	Novel Polarized-Light Emitting Polymer Systems. Japanese Journal of Applied Physics, 2001, 40, 5966-5971.	1.5	1
	183	High permittivity dielectrics for poly(3-alkylthiophene) field-effect transistor devices. Organic Electronics, 2012, 13, 173-177.	2.6	1
1	184	Using the Stark effect to understand charge generation in organic solar cells. Proceedings of SPIE, 2015, , .	0.8	1
	185	ORGANIC SEMICONDUCTORS: MANIPULATION AND CONTROL OF THE MICROSTRUCTURE OF ACTIVE LAYERS. Materials and Energy, 2016, , 159-193.	0.1	1
1	186	Glossary of terms relating to electronic, photonic and magnetic properties of polymers (IUPAC) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 5
	187	Femtosecond Laserâ€Induced Refractive Index Patterning in Inorganic/Organic Hybrid Films. Advanced Photonics Research, 2022, 3, .	3.6	1
1	188	Limiting Relative Permittivity "Burn-in―in Polymer Ferroelectrics via Phase Stabilization. ACS Macro Letters, 2022, 11, 410-414.	4.8	1
	189	Optical signatures of the interplay between intermolecular and intramolecular coupling in plastic semiconductors. Proceedings of SPIE, 2012, , .	0.8	0
1	190	Long-lived photoexcitations in intercalated, partially and predominantly non-intercalated polymer:fullerene blends. , 2013, , .		0
	191	Nanostructures: Fullerene Nucleating Agents: A Route Towards Thermally Stable Photovoltaic Blends (Adv. Energy Mater. 9/2014). Advanced Energy Materials, 2014, 4, n/a-n/a.	19.5	0
1	192	Use of microcutting for high throughput electrode patterning on a flexible substrate. Journal of Micromechanics and Microengineering, 2014, 24, 015015.	2.6	0
	193	Journal of Materials Chemistry B & C joint themed issue: organic bioelectronics. Journal of Materials Chemistry C, 2015, 3, 6405-6406.	5.5	0
-	194	List of keywords for polymer science (IUPAC Technical Report). Pure and Applied Chemistry, 2019, 91, 997-1027.	1.9	0
	195	Towards Metallic-Type Transport in Polymers: Establishing Structure/Property Interrelationships. , 0, ,		0
-	196	Optoelectronic Landscape of Polymer Semiconductors in High-k Surroundings. , 0, , .		0
-	197	Beneficial Interaction between nickel oxide nanoparticles and polyethylene oxide as printable nanocomposite hole injection layer for organic solar cells. , 0, , .		0
	198	Managing Local Order in Conjugated Polymer Blends via Polarity Contrast. , 0, , .		0

#	Article	IF	CITATIONS
199	How Can We Engineer Hierarchical Structures and Pattern Functional Organic Materials?. , 0, , .		Ο
200	CHAPTER 6. Structure/Property/Processing Relationships for Organic Solar Cells. RSC Nanoscience and Nanotechnology, 0, , 182-225.	0.2	0
201	In memoriam of Alasdair James Campbell. Journal of Materials Chemistry C, 2022, 10, 8894-8894.	5.5	0