
Francesco Iannelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/30725/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Switch from planktonic to sessile life: a major event in pneumococcal pathogenesis. Molecular Microbiology, 2006, 61, 1196-1210.	2.5	282
2	Competence for genetic transformation in encapsulated strains of Streptococcus pneumoniae: two allelic variants of the peptide pheromone. Journal of Bacteriology, 1996, 178, 6087-6090.	2.2	252
3	Hic, a Novel Surface Protein of Streptococcus pneumoniae That Interferes with Complement Function. Journal of Biological Chemistry, 2000, 275, 37257-37263.	3.4	196
4	Allelic variation in the highly polymorphic locus pspC of Streptococcus pneumoniae. Gene, 2002, 284, 63-71.	2.2	162
5	Sialic Acid: A Preventable Signal for Pneumococcal Biofilm Formation, Colonization, and Invasion of the Host. Journal of Infectious Diseases, 2009, 199, 1497-1505.	4.0	135
6	Macrolide Efflux Genes mef(A) and mef(E) Are Carried by Different Genetic Elements in Streptococcus pneumoniae. Journal of Clinical Microbiology, 2002, 40, 774-778.	3.9	130
7	The Type 2 Capsule Locus of <i>Streptococcus pneumoniae</i> . Journal of Bacteriology, 1999, 181, 2652-2654.	2.2	124
8	Characterization of a Genetic Element Carrying the Macrolide Efflux Gene mef (A) in Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy, 2000, 44, 2585-2587.	3.2	123
9	Upper and Lower Respiratory Tract Infection by Streptococcus pneumoniae Is Affected by Pneumolysin Deficiency and Differences in Capsule Type. Infection and Immunity, 2002, 70, 2886-2890.	2.2	113
10	Pneumococcal zinc metalloproteinase ZmpC cleaves human matrix metalloproteinase 9 and is a virulence factor in experimental pneumonia. Molecular Microbiology, 2004, 49, 795-805.	2.5	97
11	The Novel Conjugative Transposon Tn1207.3Carries the Macrolide Efflux Genemef(A) inStreptococcus pyogenes. Microbial Drug Resistance, 2003, 9, 243-247.	2.0	89
12	Streptococcus pneumoniae–Associated Human Macrophage Apoptosis after Bacterial Internalization via Complement and Fcγ Receptors Correlates with Intracellular Bacterial Load. Journal of Infectious Diseases, 2003, 188, 1119-1131.	4.0	86
13	Interleukin-1β Regulates CXCL8 Release and Influences Disease Outcome in Response to Streptococcus pneumoniae, Defining Intercellular Cooperation between Pulmonary Epithelial Cells and Macrophages. Infection and Immunity, 2012, 80, 1140-1149.	2.2	85
14	Tn 2009 , a Tn 916 -Like Element Containing mef (E) in Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy, 2004, 48, 2037-2042.	3.2	77
15	Antibacterial Activity of a Competence-Stimulating Peptide in Experimental Sepsis Caused by Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy, 2004, 48, 4725-4732.	3.2	75
16	The impact of the competence quorum sensing system on Streptococcus pneumoniaebiofilms varies depending on the experimental model. BMC Microbiology, 2011, 11, 75.	3.3	74
17	Construction of new unencapsulated (rough) strains of Streptococcus pneumoniae. Research in Microbiology, 2002, 153, 243-247.	2.1	73
18	Pneumococcal Surface Protein C Contributes to Sepsis Caused by Streptococcus pneumoniae in Mice. Infection and Immunity, 2004, 72, 3077-3080.	2.2	73

FRANCESCO IANNELLI

#	Article	IF	CITATIONS
19	The three extra-cellular zinc metalloproteinases of Streptococcus pneumoniae have a different impact on virulence in mice. BMC Microbiology, 2003, 3, 14.	3.3	61
20	The mef (E)-Carrying Genetic Element (mega) of Streptococcus pneumoniae : Insertion Sites and Association with Other Genetic Elements. Antimicrobial Agents and Chemotherapy, 2006, 50, 3361-3366.	3.2	61
21	Sensor domain of histidine kinase ComD confers competence pherotype specificity inStreptoccoccus pneumoniae. FEMS Microbiology Letters, 2005, 252, 321-326.	1.8	56
22	The Contribution of PspC to Pneumococcal Virulence Varies between Strains and Is Accomplished by Both Complement Evasion and Complement-Independent Mechanisms. Infection and Immunity, 2006, 74, 5319-5324.	2.2	49
23	Method for Introducing Specific and Unmarked Mutations Into the Chromosome of Streptococcus pneumoniae. Molecular Biotechnology, 2004, 26, 81-86.	2.4	48
24	Nucleotide sequence of conjugative prophage Φ1207.3 (formerly Tn1207.3) carrying the mef(A)/msr(D) genes for eÃ⁻¬"ux resistance to macrolides in Streptococcus pyogenes. Frontiers in Microbiology, 2014, 5, 687.	3.5	43
25	Type M Resistance to Macrolides Is Due to a Two-Gene Efflux Transport System of the ATP-Binding Cassette (ABC) Superfamily. Frontiers in Microbiology, 2018, 9, 1670.	3.5	40
26	Genetic Elements Carrying Macrolide Efflux Genes in Streptococci. Current Drug Targets Infectious Disorders, 2004, 4, 203-206.	2.1	37
27	Functional Analysis of Pneumococcal Drug Efflux Pumps Associates the MATE DinF Transporter with Quinolone Susceptibility. Antimicrobial Agents and Chemotherapy, 2013, 57, 248-253.	3.2	37
28	Complete genome sequence of a serotype 11A, ST62 Streptococcus pneumoniaeinvasive isolate. BMC Microbiology, 2011, 11, 25.	3.3	36
29	Binding and Agglutination of Streptococcus pneumoniae by Human Surfactant Protein D (SP-D) Vary between Strains, but SP-D Fails To Enhance Killing by Neutrophils. Infection and Immunity, 2004, 72, 709-716.	2.2	34
30	Nucleotide sequence and functional analysis of the tet (M)-carrying conjugative transposon Tn5251 of Streptococcus pneumoniae. FEMS Microbiology Letters, 2010, 308, no-no.	1.8	34
31	Binding ofStreptococcus gordoniito extracellular matrix proteins. FEMS Microbiology Letters, 2006, 265, 172-177.	1.8	29
32	DNA Microarray for Detection of Macrolide Resistance Genes. Antimicrobial Agents and Chemotherapy, 2006, 50, 2038-2041.	3.2	29
33	Nucleotide Sequence Analysis of Integrative Conjugative Element Tn <i>5253</i> of Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy, 2014, 58, 1235-1239.	3.2	29
34	New Genetic Element Carrying the Erythromycin Resistance Determinant <i>erm</i> (TR) in <i>Streptococcus pneumoniae</i> . Antimicrobial Agents and Chemotherapy, 2008, 52, 619-625.	3.2	25
35	Expression of Genes for Drug Transporters in the Human Female Genital Tract and Modulatory Effect of Antiretroviral Drugs. PLoS ONE, 2015, 10, e0131405.	2.5	25
36	The puzzle of zmpB and extensive chain formation, autolysis defect and non-translocation of choline-binding proteins in Streptococcus pneumoniae. Molecular Microbiology, 2001, 39, 1651-1660.	2.5	24

FRANCESCO IANNELLI

#	Article	IF	CITATIONS
37	Stimulation of Human Monocytes with the Gram-Positive Vaccine Vector Streptococcus gordonii. Vaccine Journal, 2006, 13, 1037-1043.	3.1	21
38	Macrolide-Resistance Genes in Clinical Isolates ofStreptococcus pyogenes. Microbial Drug Resistance, 2002, 8, 129-132.	2.0	20
39	Characterization of Cryptic Plasmids pDP1 and pSMB1 ofStreptococcus pneumoniae. Plasmid, 1999, 41, 70-72.	1.4	16
40	The factor H-binding fragment of PspC as a vaccine antigen for the induction of protective humoral immunity against experimental pneumococcal sepsis. Vaccine, 2011, 29, 8241-8249.	3.8	16
41	Drug transporter gene expression in human colorectal tissue and cell lines: modulation with antiretrovirals for microbicide optimization. Journal of Antimicrobial Chemotherapy, 2016, 71, 372-386.	3.0	16
42	Direct sequencing of long polymerase chain reaction fragments. Molecular Biotechnology, 1998, 10, 183-185.	2.4	15
43	The lack of Pneumococcal surface protein C (PspC) increases the susceptibility of Streptococcus pneumoniae to the killing by microglia. Medical Microbiology and Immunology, 2006, 195, 21-28.	4.8	15
44	Excision and Circularization of Integrative Conjugative Element Tn5253 of Streptococcus pneumoniae. Frontiers in Microbiology, 2018, 9, 1779.	3.5	15
45	Genomics and Genetics of <i>Streptococcus pneumoniae</i> . Microbiology Spectrum, 2019, 7, .	3.0	14
46	Interferon-Î ³ from Brain Leukocytes Enhances Meningitis by Type 4 Streptococcus pneumoniae. Frontiers in Microbiology, 2015, 6, 1340.	3.5	10
47	Novel Primer-Probe Sets for Detection and Identification of Mycobacteria by PCR-Microarray Assay. Journal of Clinical Microbiology, 2012, 50, 3777-3779.	3.9	9
48	A Mating Procedure for Genetic Transfer of Integrative and Conjugative Elements (ICEs) of Streptococci and Enterococci. Methods and Protocols, 2021, 4, 59.	2.0	8
49	Increased reliability of selective PCR by using additionally mutated primers and a commercialTaq DNA polymerase enhancer. Molecular Biotechnology, 1995, 3, 166-169.	2.4	7
50	Complete Genome Sequence of Streptococcus pneumoniae Strain Rx1, a Hex Mismatch Repair-Deficient Standard Transformation Recipient. Microbiology Resource Announcements, 2021, 10, e0079921.	0.6	7
51	Transporters for Antiretroviral Drugs in Colorectal CD4+ T Cells and Circulating α4β7 Integrin CD4+ T Cells: Implications for HIV Microbicides. Molecular Pharmaceutics, 2016, 13, 3334-3340.	4.6	6
52	<i>In Vivo</i> Modulation of Cervicovaginal Drug Transporters and Tissue Distribution by Film-Released Tenofovir and Darunavir for Topical Prevention of HIV-1. Molecular Pharmaceutics, 2020, 17, 852-864.	4.6	5
53	Complete Genome Sequence of Lactobacillus crispatus Type Strain ATCC 33820. Microbiology Resource Announcements, 2021, 10, e0063421.	0.6	5
54	Chromosomal integration of Tn5253 occurs downstream of a conserved 11-bp sequence of the rbgA gene in Streptococcus pneumoniae and in all the other known hosts of this integrative conjugative element (ICE). Mobile DNA, 2021, 12, 25.	3.6	5

#	Article	IF	CITATIONS
55	Predicted transmembrane proteins with homology to Mef(A) are not responsible for complementing mef(A) deletion in the mef(A)–msr(D) macrolide efflux system in Streptococcus pneumoniae. BMC Research Notes, 2021, 14, 432.	1.4	5
56	Mycobacterium sherrisii visceral disseminated infection in an African HIV-infected adolescent. International Journal of Infectious Diseases, 2016, 45, 43-45.	3.3	2
57	Complete Genome Sequences of Mycobacterium chimaera Strains 850 and 852, Isolated from Heater-Cooler Unit Water. Microbiology Resource Announcements, 2022, 11, e0102121.	0.6	2
58	Genomic polymorphisms in a Laboratory Isolate of Mycobacterium tuberculosis Reference Strain H37Rv (ATCC27294). New Microbiologica, 2017, 40, 62-69.	0.1	2
59	DNA isolation methods for Nanopore sequencing of the Streptococcus mitis genome. Microbial Genomics, 2022, 8, .	2.0	2
60	Genome sequence typing and antimicrobial susceptibility testing of infertility-associated Enterococcus faecalis reveals clonality of aminoglycoside-resistant strains. Journal of Global Antimicrobial Resistance, 2022, 29, 194-196.	2.2	1
61	Genomics and Genetics ofStreptococcus pneumoniae. , 0, , 344-361.		0
62	Immune Memory After Respiratory Infection With Streptococcus pneumoniae Is Revealed by in vitro Stimulation of Murine Splenocytes With Inactivated Pneumococcal Whole Cells: Evidence of Early	3.9	0

Recall Responses by Transcriptomic Analysis. Frontiers in Cellular and Infection Microbiology, 0, 12, .