Yujie Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3072460/publications.pdf

Version: 2024-02-01

67	9,483	39	66
papers	citations	h-index	g-index
67	67	67	10643 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Expanded graphite as superior anode for sodium-ion batteries. Nature Communications, 2014, 5, 4033.	5.8	1,472
2	Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodiumâ€ion and Lithiumâ€ion Batteries. Advanced Energy Materials, 2013, 3, 128-133.	10.2	773
3	Electrospun Sb/C Fibers for a Stable and Fast Sodium-Ion Battery Anode. ACS Nano, 2013, 7, 6378-6386.	7.3	610
4	Electrochemical Intercalation of Potassium into Graphite. Advanced Functional Materials, 2016, 26, 8103-8110.	7.8	545
5	Comparison of electrochemical performances of olivine NaFePO ₄ in sodium-ion batteries and olivine LiFePO ₄ in lithium-ion batteries. Nanoscale, 2013, 5, 780-787.	2.8	420
6	Red Phosphorus–Single-Walled Carbon Nanotube Composite as a Superior Anode for Sodium Ion Batteries. ACS Nano, 2015, 9, 3254-3264.	7.3	359
7	Galvanostatic Intermittent Titration Technique for Phase-Transformation Electrodes. Journal of Physical Chemistry C, 2010, 114, 2830-2841.	1.5	314
8	A Battery Made from a Single Material. Advanced Materials, 2015, 27, 3473-3483.	11.1	291
9	Confined Sulfur in Microporous Carbon Renders Superior Cycling Stability in Li/S Batteries. Advanced Functional Materials, 2015, 25, 4312-4320.	7.8	279
10	3D Si/C Fiber Paper Electrodes Fabricated Using a Combined Electrospray/Electrospinning Technique for Li″on Batteries. Advanced Energy Materials, 2015, 5, 1400753.	10.2	247
11	Performing heritage: rethinking authenticity in tourism. Annals of Tourism Research, 2012, 39, 1495-1513.	3.7	233
12	<i>In Situ</i> Formed Lithium Sulfide/Microporous Carbon Cathodes for Lithium-Ion Batteries. ACS Nano, 2013, 7, 10995-11003.	7.3	215
13	Copperâ€Stabilized Sulfurâ€Microporous Carbon Cathodes for Li–S Batteries. Advanced Functional Materials, 2014, 24, 4156-4163.	7.8	200
14	Electrospun FeS ₂ @Carbon Fiber Electrode as a High Energy Density Cathode for Rechargeable Lithium Batteries. ACS Nano, 2016, 10, 1529-1538.	7.3	199
15	Superior Stable Selfâ€Healing SnP ₃ Anode for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1500174.	10.2	197
16	Enhanced Multiple Anchoring and Catalytic Conversion of Polysulfides by Amorphous MoS∢sub>3 Nanoboxes for Highâ€Performance Liâ€6 Batteries. Angewandte Chemie - International Edition, 2020, 59, 13071-13078.	7.2	186
17	Layered Potassium Vanadate K _{0.5} V ₂ O ₅ as a Cathode Material for Nonaqueous Potassium Ion Batteries. Advanced Functional Materials, 2018, 28, 1800670.	7.8	174
18	Investigation of the Prussian Blue Analog Co ₃ [Co(CN) ₆] ₂ as an Anode Material for Nonaqueous Potassiumâ€lon Batteries. Advanced Materials, 2018, 30, e1802510.	11.1	167

#	Article	IF	CITATIONS
19	Carbonized Polyacrylonitrileâ€ 5 tabilized SeS _x Cathodes for Long Cycle Life and High Power Density Lithium Ion Batteries. Advanced Functional Materials, 2014, 24, 4082-4089.	7.8	165
20	Flexible Electrodes for Sodiumâ€ion Batteries: Recent Progress and Perspectives. Advanced Materials, 2017, 29, 1703012.	11.1	156
21	Hybrid Mg ²⁺ /Li ⁺ Battery with Long Cycle Life and High Rate Capability. Advanced Energy Materials, 2015, 5, 1401507.	10.2	155
22	Defect-free potassium manganese hexacyanoferrate cathode material for high-performance potassium-ion batteries. Nature Communications, 2021, 12, 2167.	5.8	153
23	A Generalized Strategy for the Synthesis of Largeâ€Size Ultrathin Twoâ€Dimensional Metal Oxide Nanosheets. Angewandte Chemie - International Edition, 2017, 56, 8766-8770.	7.2	135
24	Lithium–tellurium batteries based on tellurium/porous carbon composite. Journal of Materials Chemistry A, 2014, 2, 12201-12207.	5.2	121
25	Recent Progress on Spray Pyrolysis for High Performance Electrode Materials in Lithium and Sodium Rechargeable Batteries. Advanced Energy Materials, 2017, 7, 1601578.	10.2	120
26	In Situ Atomicâ€Scale Imaging of Phase Boundary Migration in FePO ₄ Microparticles During Electrochemical Lithiation. Advanced Materials, 2013, 25, 5461-5466.	11.1	119
27	In Situ Sulfur Reduction and Intercalation of Graphite Oxides for Liâ€5 Battery Cathodes. Advanced Energy Materials, 2014, 4, 1400482.	10.2	118
28	Cultural effects of authenticity: contested heritage practices in China. International Journal of Heritage Studies, 2015, 21, 594-608.	1.0	113
29	Electrochemical Techniques for Intercalation Electrode Materials in Rechargeable Batteries. Accounts of Chemical Research, 2017, 50, 1022-1031.	7.6	105
30	Amorphous FeVO4 as a promising anode material for potassium-ion batteries. Energy Storage Materials, 2019, 22, 160-167.	9.5	100
31	Influence of KPF ₆ and KFSI on the Performance of Anode Materials for Potassium-lon Batteries: A Case Study of MoS ₂ . ACS Applied Materials & Interfaces, 2019, 11, 22449-22456.	4.0	97
32	PEDOT Encapsulated FeOF Nanorod Cathodes for High Energy Lithium-Ion Batteries. Nano Letters, 2015, 15, 7650-7656.	4.5	96
33	Pomegranate-Structured Conversion-Reaction Cathode with a Built-in Li Source for High-Energy Li-Ion Batteries. ACS Nano, 2016, 10, 5567-5577.	7.3	88
34	Novel CV for Phase Transformation Electrodes. Journal of Physical Chemistry C, 2011, 115, 823-832.	1.5	87
35	Activation of Oxygenâ€Stabilized Sulfur for Li and Na Batteries. Advanced Functional Materials, 2016, 26, 745-752.	7.8	80
36	Mesoporous carbon/silicon composite anodes with enhanced performance for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 9751-9757.	5.2	78

#	Article	IF	CITATIONS
37	Carbon cage encapsulating nano-cluster Li2S by ionic liquid polymerization and pyrolysis for high performance Li–S batteries. Nano Energy, 2015, 13, 467-473.	8.2	76
38	A Nonflammable Electrolyte Enabled High Performance K _{0.5} MnO ₂ Cathode for Low-Cost Potassium-Ion Batteries. ACS Energy Letters, 2020, 5, 1916-1922.	8.8	61
39	K _{0.83} V ₂ O ₅ : A New Layered Compound as a Stable Cathode Material for Potassium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 9332-9340.	4.0	43
40	Enhancing Nitrogen Electroreduction to Ammonia by Doping Chlorine on Reduced Graphene Oxide. ACS Catalysis, 2020, 10, 14928-14935.	5.5	34
41	Uses of the past: negotiating heritage in Xi'an. International Journal of Heritage Studies, 2018, 24, 181-192.	1.0	29
42	Heritage as soft power: Japan and China in international politics. International Journal of Cultural Policy, 2020, 26, 869-881.	0.8	25
43	When the Global Meets the Local in Tourism—Cultural Performances in Lijiang as Case Studies. Journal of China Tourism Research, 2012, 8, 302-319.	1.2	23
44	A Generalized Strategy for the Synthesis of Largeâ€Size Ultrathin Twoâ€Dimensional Metal Oxide Nanosheets. Angewandte Chemie, 2017, 129, 8892-8896.	1.6	22
45	High-performance layered potassium vanadium oxide for K-ion batteries enabled by reduced long-range structural order. Journal of Materials Chemistry A, 2021, 9, 13125-13134.	5.2	17
46	Sulfurized Polyacrylonitrile as a High-Performance and Low-Volume Change Anode for Robust Potassium Storage. ACS Nano, 2021, 15, 18419-18428.	7.3	17
47	Memory, homecoming and the politics of diaspora tourism in China. Tourism Geographies, 2020, , 1-18.	2.2	16
48	Tilapia head glycolipids protect mice against dextran sulfate sodium-induced colitis by ameliorating the gut barrier and suppressing NF-kappa B signaling pathway. International Immunopharmacology, 2021, 96, 107802.	1.7	14
49	Lifestyle mobility: shifting conception of home in modern China. International Journal of Tourism Anthropology, 2018, 6, 357.	0.3	13
50	A non-topotactic redox reaction enabled K ₂ V ₃ O ₈ as a high voltage cathode material for potassium-ion batteries. Chemical Communications, 2019, 55, 14988-14991.	2.2	13
51	Carbon-Nanotube-Encapsulated-Sulfur Cathodes for Lithium–Sulfur Batteries: Integrated Computational Design and Experimental Validation. Nano Letters, 2022, 22, 441-447.	4.5	12
52	Coiled-Coil Domain-Containing 68 Downregulation Promotes Colorectal Cancer Cell Growth by Inhibiting ITCH-Mediated CDK4 Degradation. Frontiers in Oncology, 2021, 11, 668743.	1.3	11
53	A Polymorphic FeS ₂ Cathode Enabled by Copper Current Collector Induced Displacement Redox Mechanism. ACS Nano, 2021, 15, 11694-11703.	7. 3	11
54	Cut-and-stack nanofiber paper toward fast transient energy storage. Inorganic Chemistry Frontiers, 2016, 3, 681-688.	3.0	10

#	Article	IF	CITATIONS
55	Highly Active and Stable Li ₂ Sâ^'Cu Nanocomposite Cathodes Enabled by Kinetically Favored Displacement Interconversion between Cu ₂ S and Li ₂ S. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
56	Domesticating Tourism Anthropology in China. American Anthropologist, 2017, 119, 730-735.	0.7	9
57	Low-defect K ₂ Mn[Fe(CN) ₆]-reduced graphene oxide composite for high-performance potassium-ion batteries. Chemical Communications, 2021, 57, 8632-8635.	2.2	9
58	Enhanced Multiple Anchoring and Catalytic Conversion of Polysulfides by Amorphous MoS 3 Nanoboxes for Highâ€Performance Liâ€S Batteries. Angewandte Chemie, 2020, 132, 13171-13178.	1.6	7
59	Hot interpretations of difficult heritage: the Memorial Hall of the Nanjing Massacre in China. Journal of Cultural Heritage Management and Sustainable Development, 2022, 12, 32-44.	0.5	7
60	Effects of constant Ca2+ concentration in salinity fluctuations on growth and energy budget of juvenile Litopenaeus vannamei. Aquaculture International, 2012, 20, 177-188.	1.1	6
61	The effects of different Ca2+ concentration fluctuation on the moulting, growth and energy budget of juvenile Litopenaeus vannamei (Boone). Aquaculture Research, 2011, 42, 1453-1459.	0.9	5
62	Elastic Modulus Measurements on Large Diameter Nanowires Using a Nano-Assembled Platform. Journal of Nanotechnology in Engineering and Medicine, 2014, 5, .	0.8	5
63	Holey reduced graphene oxide-assisted oxide-derived Bi for efficient nitrogen electroreduction. Journal of Materials Chemistry A, 2022, 10, 8245-8251.	5.2	4
64	Potassium iodide as a low-cost cathode material for efficient potassium-ion storage. Energy Storage Materials, 2021, 41, 798-804.	9.5	3
65	Boronic Acidâ€containing Stimuliâ€responsive Polymers Modified Nanopores for Labelâ€free Dualâ€signalâ€output Detection of Glucose. Electroanalysis, 2022, 34, 326-331.	1.5	2
66	In-Situ Analytical Transmission Electron Microscopy Study of Electrochemical Lithiation of a Sulfur - Carbon Nanotube Composite Cathode. Microscopy and Microanalysis, 2015, 21, 1513-1514.	0.2	1
67	Highly Active and Stable Li2S–Cu Nanocomposite Cathodes Enabled by Kinetically Favored Displacement Interconversion between Cu2S and Li2S. Angewandte Chemie, 0, , .	1.6	1