
Marcelo A Da Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3072054/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enzymatically Cross-Linked Tilapia Gelatin Hydrogels: Physical, Chemical, and Hybrid Networks. Biomacromolecules, 2011, 12, 3741-3752.	5.4	98
2	Detection of charge distributions in insulator surfaces. Journal of Physics Condensed Matter, 2009, 21, 263002.	1.8	83
3	Exploring the Kinetics of Gelation and Final Architecture of Enzymatically Cross-Linked Chitosan/Gelatin Gels. Biomacromolecules, 2015, 16, 1401-1409.	5.4	52
4	Competitive and Synergistic Interactions between Polymer Micelles, Drugs, and Cyclodextrins: The Importance of Drug Solubilization Locus. Langmuir, 2016, 32, 13174-13186.	3.5	46
5	Worm-like Micelles of CTAB and Sodium Salicylate under Turbulent Flow. Langmuir, 2008, 24, 13875-13879.	3.5	42
6	TEMPO-oxidised cellulose nanofibrils; probing the mechanisms of gelation <i>via</i> small angle X-ray scattering. Physical Chemistry Chemical Physics, 2018, 20, 16012-16020.	2.8	41
7	Enzymatically Crossâ€Linked Gelatin/Chitosan Hydrogels: Tuning Gel Properties and Cellular Response. Macromolecular Bioscience, 2014, 14, 817-830.	4.1	37
8	Hybrid gelation processes in enzymatically gelled gelatin: impact on nanostructure, macroscopic properties and cellular response. Soft Matter, 2013, 9, 6986-6999.	2.7	35
9	Soft nanocomposites of gelatin and poly(3-hydroxybutyrate) nanoparticles for dual drug release. Colloids and Surfaces B: Biointerfaces, 2017, 157, 191-198.	5.0	35
10	Assessing the Potential of Folded Globular Polyproteins As Hydrogel Building Blocks. Biomacromolecules, 2017, 18, 636-646.	5.4	35
11	Effect of monomeric and polymeric co-solutes on cetyltrimethylammonium bromide wormlike micelles: Rheology, Cryo-TEM and Small-angle neutron scattering. Journal of Colloid and Interface Science, 2010, 345, 351-359.	9.4	34
12	Solvent-induced lysozyme gels: Rheology, fractal analysis, and sol–gel kinetics. Journal of Colloid and Interface Science, 2005, 289, 394-401.	9.4	32
13	Understanding heat driven gelation of anionic cellulose nanofibrils: Combining saturation transfer difference (STD) NMR, small angle X-ray scattering (SAXS) and rheology. Journal of Colloid and Interface Science, 2019, 535, 205-213.	9.4	32
14	Soft nanocomposites: nanoparticles to tune gel properties. Polymer International, 2016, 65, 268-279.	3.1	29
15	Selective Tuning of the Self-Assembly and Gelation of a Hydrophilic Poloxamine by Cyclodextrins. Langmuir, 2015, 31, 5645-5655.	3.5	28
16	Effects of Extrusion on the Emulsifying Properties of Rumen and Soy Protein. Food Biophysics, 2010, 5, 94-102.	3.0	19
17	Alcohol induced gelation of TEMPO-oxidized cellulose nanofibril dispersions. Soft Matter, 2018, 14, 9243-9249.	2.7	19
18	Cationic surfactants as a non-covalent linker for oxidised cellulose nanofibrils and starch-based hydrogels. Carbohydrate Polymers, 2020, 233, 115816.	10.2	18

MARCELO A DA SILVA

#	Article	IF	CITATIONS
19	Non-volatile conductive gels made from deep eutectic solvents and oxidised cellulose nanofibrils. Nanoscale Advances, 2021, 3, 2252-2260.	4.6	18
20	Solvent-induced lysozyme gels: Effects of system composition and temperature on structural and dynamic characteristics. Biopolymers, 2006, 83, 443-454.	2.4	16
21	Surfactant controlled zwitterionic cellulose nanofibril dispersions. Soft Matter, 2018, 14, 7793-7800.	2.7	16
22	Reverse micelles with spines: L ₂ phases of surfactant ion—polyion complex salts, n-alcohols and water investigated by rheology, NMR diffusion and SAXS measurements. Soft Matter, 2010, 6, 144-153.	2.7	15
23	Associative networks of cholesterol-modified dextran with short and long micelles. Soft Matter, 2011, 7, 4888.	2.7	15
24	Lysozyme viscoelastic matrices in tetramethylurea/water media: a small angle X-ray scattering study. Biophysical Chemistry, 2002, 99, 169-179.	2.8	14
25	Self-assembly of amphiphilic polyoxometalates for the preparation of mesoporous polyoxometalate-titania catalysts. Nanoscale, 2020, 12, 22245-22257.	5.6	14
26	Thermoresponsive Triblock opolymers of Polyethylene Oxide and Polymethacrylates: Linking Chemistry, Nanoscale Morphology, and Rheological Properties. Advanced Functional Materials, 2022, 32, 2109010.	14.9	14
27	Tuning the Viscoelasticity of Nonionic Wormlike Micelles with β-Cyclodextrin Derivatives: A Highly Discriminative Process. Langmuir, 2013, 29, 7697-7708.	3.5	13
28	Processes associated with ionic current rectification at a 2D-titanate nanosheet deposit on a microhole poly(ethylene terephthalate) substrate. Journal of Solid State Electrochemistry, 2019, 23, 1237-1248.	2.5	12
29	Charge-driven interfacial gelation of cellulose nanofibrils across the water/oil interface. Soft Matter, 2020, 16, 357-365.	2.7	12
30	Filler size effect in an attractive fibrillated network: a structural and rheological perspective. Soft Matter, 2020, 16, 3303-3310.	2.7	12
31	Bacteriophage M13 Aggregation on a Microhole Poly(ethylene terephthalate) Substrate Produces an Anionic Current Rectifier: Sensitivity toward Anionic versus Cationic Guests. ACS Applied Bio Materials, 2020, 3, 512-521.	4.6	11
32	Rheological study on lysozyme/tetramethylurea viscoelastic matrices. Biophysical Chemistry, 2002, 99, 129-141.	2.8	10
33	Remarkable Viscoelasticity in Mixtures of Cyclodextrins and Nonionic Surfactants. Langmuir, 2014, 30, 11552-11562.	3.5	10
34	Lysozyme gelation in mixtures of tetramethylurea with protic solvents: Use of solvatochromic indicators to probe medium microstructure and solute–solvent interactions. Journal of Molecular Structure, 2007, 841, 51-60.	3.6	9
35	Deep eutectic solvent in water pickering emulsions stabilised by cellulose nanofibrils. RSC Advances, 2020, 10, 37023-37027.	3.6	8
36	Impact of wormlike micelles on nano and macroscopic structure of TEMPO-oxidized cellulose nanofibril hydrogels. Soft Matter, 2020, 16, 4887-4896.	2.7	7

MARCELO A DA SILVA

#	Article	IF	CITATIONS
37	Polymer Architecture Effects on Poly(N,Nâ€Diethyl Acrylamide)â€bâ€Poly(Ethylene Glycol)â€bâ€Poly(N,Nâ€Diet Bioscience, 2022, 22, e2100432.	hyl) Tj ET(4.1	Qq1 1 0.7843 7
38	Measurement of the Viscoelastic Properties of the Vocal Folds. Annals of Otology, Rhinology and Laryngology, 2009, 118, 461-464.	1.1	6
39	Spin diffusion transfer difference (SDTD) NMR: An advanced method for the characterisation of water structuration within particle networks. Journal of Colloid and Interface Science, 2021, 594, 217-227.	9.4	6
40	Tightening of gelatin chemically crosslinked networks assisted by physical gelation. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1850-1858.	2.1	5
41	New Experimental Technique To Measure the Efficiency of Drag Reducer Additives for Oil Samples. Energy & Fuels, 2009, 23, 4529-4532.	5.1	4
42	Microstructural, Thermal, Crystallization, and Water Absorption Properties of Films Prepared from Neverâ€Dried and Freezeâ€Dried Cellulose Nanocrystals. Macromolecular Materials and Engineering, 2021, 306, 2000462.	3.6	3
43	Monovalent Salt and pH-Induced Gelation of Oxidised Cellulose Nanofibrils and Starch Networks: Combining Rheology and Small-Angle X-ray Scattering. Polymers, 2021, 13, 951.	4.5	3
44	Antagonistic mixing in micelles of amphiphilic polyoxometalates and hexaethylene glycol monododecyl ether. Journal of Colloid and Interface Science, 2020, 578, 608-618.	9.4	2
45	Core–Shell Spheroidal Hydrogels Produced via Charge-Driven Interfacial Complexation. ACS Applied Polymer Materials, 2020, 2, 1213-1221.	4.4	2
46	Drug reformulation for a neglected disease. The NANOHAT project to develop a safer more effective sleeping sickness drug. PLoS Neglected Tropical Diseases, 2021, 15, e0009276.	3.0	2
47	Rheological modification of partially oxidised cellulose nanofibril gels with inorganic clays. PLoS ONE, 2021, 16, e0252660.	2.5	2
48	Chapter 4. Unusual Surfactants. RSC Soft Matter, 2017, , 63-102.	0.4	1
49	Dynamic Viscosity of Implantable Autologous Materials Into the Vocal Fold. Journal of Voice, 2012, 26, 502-505.	1.5	0