John M Burke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3071652/publications.pdf Version: 2024-02-01

IOHN M RUDKE

#	Article	lF	CITATIONS
1	GC content of plant genes is linked to past gene duplications. PLoS ONE, 2022, 17, e0261748.	2.5	6
2	Expression complementation of gene presence/absence polymorphisms in hybrids contributes importantly to heterosis in sunflower. Journal of Advanced Research, 2022, 42, 83-98.	9.5	12
3	Genomic regions associate with major axes of variation driven by gas exchange and leaf construction traits in cultivated sunflower (<i>Helianthus annuus</i> L.). Plant Journal, 2022, 111, 1425-1438.	5.7	4
4	Genetic control of arbuscular mycorrhizal colonization by Rhizophagus intraradices in Helianthus annuus (L.). Mycorrhiza, 2021, 31, 723-734.	2.8	9
5	Key Traits and Genes Associate with Salinity Tolerance Independent from Vigor in Cultivated Sunflower. Plant Physiology, 2020, 184, 865-880.	4.8	16
6	Phylogeography and the Evolutionary History of Sunflower (Helianthus annuus L.): Wild Diversity and the Dynamics of Domestication. Genes, 2020, 11, 266.	2.4	10
7	Impact of Deficit Irrigation on Shallow Saline Groundwater Contribution and Sunflower Productivity in the Imperial Valley, California. Water (Switzerland), 2020, 12, 571.	2.7	9
8	Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature, 2020, 584, 602-607.	27.8	263
9	Genome-Wide Association Mapping of Floral Traits in Cultivated Sunflower (Helianthus annuus). Journal of Heredity, 2019, 110, 275-286.	2.4	16
10	Effect of Deficit Irrigation on Nitrogen Uptake of Sunflower in the Low Desert Region of California. Water (Switzerland), 2019, 11, 2340.	2.7	11
11	Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance. Nature Plants, 2019, 5, 54-62.	9.3	172
12	Genomeâ€wide analysis of allele frequency change in sunflower crop–wild hybrid populations evolving under natural conditions. Molecular Ecology, 2018, 27, 233-247.	3.9	18
13	Multiple genomic regions influence root morphology and seedling growth in cultivated sunflower (Helianthus annuus L.) under well-watered and water-limited conditions. PLoS ONE, 2018, 13, e0204279.	2.5	24
14	The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature, 2017, 546, 148-152.	27.8	579
15	Connectivity in gene coexpression networks negatively correlates with rates of molecular evolution in flowering plants. PLoS ONE, 2017, 12, e0182289.	2.5	36
16	Population Genetics of the Rubber-Producing Russian Dandelion (Taraxacum kok-saghyz). PLoS ONE, 2016, 11, e0146417.	2.5	22
17	Widespread natural variation of DNA methylation within angiosperms. Genome Biology, 2016, 17, 194.	8.8	436
18	Range-wide phenotypic and genetic differentiation in wild sunflower. BMC Plant Biology, 2016, 16, 249.	3.6	17

#	Article	IF	CITATIONS
19	Genetic Mapping of Millions of SNPs in Safflower (<i>Carthamus tinctorius</i> L.) via Whole-Genome Resequencing. G3: Genes, Genomes, Genetics, 2016, 6, 2203-2211.	1.8	39
20	Environmental requirements trump genetic factors in explaining narrow endemism in two imperiled Florida sunflowers. Conservation Genetics, 2015, 16, 1277-1293.	1.5	4
21	A Unified Single Nucleotide Polymorphism Map of Sunflower (Helianthus annuus L.) Derived from Current Genomic Resources. Crop Science, 2015, 55, 1696-1702.	1.8	16
22	Association mapping in sunflower (Helianthus annuus L.) reveals independent control of apical vs. basal branching. BMC Plant Biology, 2015, 15, 84.	3.6	43
23	Transposome: a toolkit for annotation of transposable element families from unassembled sequence reads. Bioinformatics, 2015, 31, 1827-1829.	4.1	22
24	Evolutionary transitions in the Asteraceae coincide with marked shifts in transposable element abundance. BMC Genomics, 2015, 16, 623.	2.8	40
25	Selection on Crop-Derived Traits and QTL in Sunflower (Helianthus annuus) Crop-Wild Hybrids under Water Stress. PLoS ONE, 2014, 9, e102717.	2.5	9
26	A target enrichment method for gathering phylogenetic information from hundreds of loci: An example from the Compositae. Applications in Plant Sciences, 2014, 2, 1300085.	2.1	178
27	Chromosomal Evolution and Patterns of Introgression in <i>Helianthus</i> . Genetics, 2014, 197, 969-979.	2.9	52
28	Genetic analysis of safflower domestication. BMC Plant Biology, 2014, 14, 43.	3.6	40
29	Genomics of <scp>C</scp> ompositae crops: reference transcriptome assemblies and evidence of hybridization with wild relatives. Molecular Ecology Resources, 2014, 14, 166-177.	4.8	45
30	Genetic diversity in <i>Carthamus tinctorius</i> (Asteraceae; safflower), an underutilized oilseed crop. American Journal of Botany, 2014, 101, 1640-1650.	1.7	25
31	Molecular Evolution of Candidate Genes for Crop-Related Traits in Sunflower (Helianthus annuus L.). PLoS ONE, 2014, 9, e99620.	2.5	11
32	Genetic diversity and population structure in the rare Algodones sunflower (Helianthus niveus ssp.) Tj ETQq0 0 0	rgßŢ /Ove	erlock 10 Tf 5
33	Sunflower as a biofuels crop: An analysis ofÂlignocellulosic chemical properties. Biomass and Bioenergy, 2013, 59, 208-217.	5.7	34
34	Sunflower genetic, genomic and ecological resources. Molecular Ecology Resources, 2013, 13, 10-20.	4.8	59
35	Genomic islands of divergence are not affected by geography of speciation in sunflowers. Nature Communications, 2013, 4, 1827.	12.8	263

36 Feeding the future. Nature, 2013, 499, 23-24.

27.8 464

#	Article	IF	CITATIONS
37	High Genetic Diversity and Low Population Structure in Porter's Sunflower (Helianthus porteri). Journal of Heredity, 2013, 104, 407-415.	2.4	24
38	Association Mapping and the Genomic Consequences of Selection in Sunflower. PLoS Genetics, 2013, 9, e1003378.	3.5	116
39	Sequence Validation of Candidates for Selectively Important Genes in Sunflower. PLoS ONE, 2013, 8, e71941.	2.5	4
40	Genetic Analysis of Floral Symmetry in Van Gogh's Sunflowers Reveals Independent Recruitment of CYCLOIDEA Genes in the Asteraceae. PLoS Genetics, 2012, 8, e1002628.	3.5	136
41	The sunflower (<i>Helianthus annuus</i> L.) genome reflects a recent history of biased accumulation of transposable elements. Plant Journal, 2012, 72, 142-153.	5.7	88
42	Evidence of selection on fatty acid biosynthetic genes during the evolution of cultivated sunflower. Theoretical and Applied Genetics, 2012, 125, 897-907.	3.6	51
43	Development of a 10,000 Locus Genetic Map of the Sunflower Genome Based on Multiple Crosses. G3: Genes, Genomes, Genetics, 2012, 2, 721-729.	1.8	96
44	Genomics of Compositae weeds: EST libraries, microarrays, and evidence of introgression. American Journal of Botany, 2012, 99, 209-218.	1.7	80
45	Development of an Ultra-Dense Genetic Map of the Sunflower Genome Based on Single-Feature Polymorphisms. PLoS ONE, 2012, 7, e51360.	2.5	12
46	SNP Discovery and Development of a High-Density Genotyping Array for Sunflower. PLoS ONE, 2012, 7, e29814.	2.5	100
47	Contributions of Flowering Time Genes to Sunflower Domestication and Improvement. Genetics, 2011, 187, 271-287.	2.9	82
48	Genetic diversity and population structure in cultivated sunflower and a comparison to its wild progenitor, Helianthus annuus L. Theoretical and Applied Genetics, 2011, 123, 693-704.	3.6	147
49	Progress towards a reference genome for sunflower. Botany, 2011, 89, 429-437.	1.0	67
50	Ecological patterns and genetic analysis of post-dispersal seed predation in sunflower (Helianthus) Tj ETQq0 0 0	rgBT/Ove	erlock 10 Tf 50
51	Population genetic analysis of safflower (<i>Carthamus tinctorius</i> ; Asteraceae) reveals a Near Eastern origin and five centers of diversity. American Journal of Botany, 2010, 97, 831-840.	1.7	53
52	Genetic Architecture of Novel Traits in the Hopi Sunflower. Journal of Heredity, 2010, 101, 727-736.	2.4	12
53	Widespread Gene Conversion in Centromere Cores. PLoS Biology, 2010, 8, e1000327.	5.6	109

⁵⁴ Population Genetics of Astragalus bibullatus (Fabaceae) Using AFLPs. Journal of Heredity, 2009, 100, 2.4 19

#	Article	IF	CITATIONS
55	Development, polymorphism, and cross-taxon utility of EST–SSR markers from safflower (Carthamus) Tj ETQq1	1 _{.0.} 78431 3.6	4ggBT /Ov∉
56	Population genetic analysis reveals a homoploid hybrid origin of <i>Stephanomeria diegensis</i> (Asteraceae). Molecular Ecology, 2009, 18, 4049-4060.	3.9	16
57	Fitness effects and genetic architecture of plant–herbivore interactions in sunflower crop–wild hybrids. New Phytologist, 2009, 184, 828-841.	7.3	37
58	Karyotypic Evolution of the Common and Silverleaf Sunflower Genomes. Plant Genome, 2009, 2, .	2.8	19
59	Selection on domestication traits and quantitative trait loci in crop–wild sunflower hybrids. Molecular Ecology, 2008, 17, 666-677.	3.9	79
60	Molecular insights into the evolution of crop plants. American Journal of Botany, 2008, 95, 113-122.	1.7	130
61	Molecular evidence and the origin of the domesticated sunflower. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, E46; author reply E49-50.	7.1	11
62	Positive Selection and Expression Divergence Following Gene Duplication in the Sunflower CYCLOIDEA Gene Family. Molecular Biology and Evolution, 2008, 25, 1260-1273.	8.9	132
63	A Genomic Scan for Selection Reveals Candidates for Genes Involved in the Evolution of Cultivated Sunflower (<i>Helianthus annuus</i>). Plant Cell, 2008, 20, 2931-2945.	6.6	269
64	Quantitative Trait Locus Analysis of the Early Domestication of Sunflower. Genetics, 2007, 176, 2589-2599.	2.9	78
65	Single Nucleotide Polymorphisms and Linkage Disequilibrium in Sunflower. Genetics, 2007, 177, 457-468.	2.9	77
66	Crop evolution: from genetics to genomics. Current Opinion in Genetics and Development, 2007, 17, 525-532.	3.3	74
67	EST-SSRs as a resource for population genetic analyses. Heredity, 2007, 99, 125-132.	2.6	499
68	GENETIC DIVERGENCE AND HYBRID SPECIATION. Evolution; International Journal of Organic Evolution, 2007, 61, 1773-1780.	2.3	142
69	DNA sequence diversity and the origin of cultivated safflower (Carthamus tinctorius L.; Asteraceae). BMC Plant Biology, 2007, 7, 60.	3.6	69
70	Universal markers for comparative mapping and phylogenetic analysis in the Asteraceae (Compositae). Theoretical and Applied Genetics, 2007, 115, 747-755.	3.6	79
71	Patterns of Nucleotide Diversity in Wild and Cultivated Sunflower. Genetics, 2006, 173, 321-330.	2.9	177
72	Letting the gene out of the bottle: the population genetics of genetically modified crops. New Phytologist, 2006, 170, 429-443.	7.3	156

#	Article	IF	CITATIONS
73	High genetic diversity in a rare and endangered sunflower as compared to a common congener. Molecular Ecology, 2006, 15, 2345-2355.	3.9	91
74	Polluting gene flow from crops: Radishes gone wild. Heredity, 2006, 97, 379-380.	2.6	3
75	Chloroplast DNA Variation Confirms a Single Origin of Domesticated Sunflower (Helianthus annuus) Tj ETQq1 1	0.784314 2.4	rg <u>B</u> T /Overic
76	EST Databases as a Source for Molecular Markers: Lessons from Helianthus. Journal of Heredity, 2006, 97, 381-388.	2.4	174
77	Chloroplast SSR polymorphisms in the Compositae and the mode of organellar inheritance in Helianthus annuus. Theoretical and Applied Genetics, 2005, 110, 941-947.	3.6	51
78	Parallel genotypic adaptation: when evolution repeats itself. Genetica, 2005, 123, 157-170.	1.1	199
79	Genetic Consequences of Selection During the Evolution of Cultivated Sunflower. Genetics, 2005, 171, 1933-1940.	2.9	80
80	Extensive Chromosomal Repatterning and the Evolution of Sterility Barriers in Hybrid Sunflower Species. Genetics, 2005, 171, 291-303.	2.9	175
81	Parallel genotypic adaptation: when evolution repeats itself. , 2005, , 157-170.		7
82	Comparative Mapping and Rapid Karyotypic Evolution in the Genus Helianthus. Genetics, 2004, 167, 449-457.	2.9	100
83	CONTRASTING GENETIC STRUCTURE OF ADULTS AND PROGENY IN A LOUISIANA IRIS HYBRID POPULATION. Evolution; International Journal of Organic Evolution, 2004, 58, 2669.	2.3	0
84	WHEN GOOD PLANTS GO BAD…. Evolution; International Journal of Organic Evolution, 2004, 58, 1637.	2.3	0
85	CONTRASTING GENETIC STRUCTURE OF ADULTS AND PROGENY IN A LOUISIANA IRIS HYBRID POPULATION. Evolution; International Journal of Organic Evolution, 2004, 58, 2669-2681.	2.3	17
86	WHEN GOOD PLANTS GO BAD?. Evolution; International Journal of Organic Evolution, 2004, 58, 1637-1638.	2.3	3
87	The genetic architecture necessary for transgressive segregation is common in both natural and domesticated populations. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1141-1147.	4.0	240
88	Fitness Effects of Transgenic Disease Resistance in Sunflowers. Science, 2003, 300, 1250-1250.	12.6	134
89	Genetic Variation and Evidence of Hybridization in the Genus Rhus (Anacardiaceae). , 2002, 93, 37-41.		9
90	Directional selection is the primary cause of phenotypic diversification. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12242-12245.	7.1	183

John M Burke

#	Article	IF	CITATIONS
91	The potential for gene flow between cultivated and wild sunflower (<i>Helianthus annuus</i>) in the United States. American Journal of Botany, 2002, 89, 1550-1552.	1.7	84
92	Genetic Analysis of Sunflower Domestication. Genetics, 2002, 161, 1257-1267.	2.9	252
93	Genetics and the Fitness of Hybrids. Annual Review of Genetics, 2001, 35, 31-52.	7.6	480
94	The biological reality of species: gene flow, selection, and collective evolution. Taxon, 2001, 50, 47-67.	0.7	155
95	A genic view of species integration. Journal of Evolutionary Biology, 2001, 14, 883-886.	1.7	45
96	Nectar Characteristics of Interspecific Hybrids and Their Parents in Aesculus (Hippocastanaceae) and Iris (Iridaceae). Journal of the Torrey Botanical Society, 2000, 127, 200.	0.3	9
97	FREQUENCY AND SPATIAL PATTERNING OF CLONAL REPRODUCTION IN LOUISIANA IRIS HYBRID POPULATIONS. Evolution; International Journal of Organic Evolution, 2000, 54, 137-144.	2.3	48
98	FREQUENCY AND SPATIAL PATTERNING OF CLONAL REPRODUCTION IN LOUISIANA IRIS HYBRID POPULATIONS. Evolution; International Journal of Organic Evolution, 2000, 54, 137.	2.3	6
99	Isolation and characterization of microsatellites in iris. Molecular Ecology, 1999, 8, 1091-1092.	3.9	9
100	How reliable is science information on the web?. Nature, 1999, 402, 722-722.	27.8	20
101	NATURAL HYBRIDIZATION: HOW LOW CAN YOU GO AND STILL BE IMPORTANT?. Ecology, 1999, 80, 371-381.	3.2	142
102	Genetic Interactions and Natural Selection in Louisiana Iris Hybrids. Evolution; International Journal of Organic Evolution, 1998, 52, 1304.	2.3	30
103	Hybrid Fitness in the Louisiana Irises: Analysis of Parental and F 1 Performance. Evolution; International Journal of Organic Evolution, 1998, 52, 37.	2.3	38
104	GENETIC INTERACTIONS AND NATURAL SELECTION IN LOUISIANA IRIS HYBRIDS. Evolution; International Journal of Organic Evolution, 1998, 52, 1304-1310.	2.3	80
105	HYBRID FITNESS IN THE LOUISIANA IRISES: ANALYSIS OF PARENTAL AND F 1 PERFORMANCE. Evolution; International Journal of Organic Evolution, 1998, 52, 37-43.	2.3	84
106	NATURAL FORMATION OF IRIS HYBRIDS: EXPERIMENTAL EVIDENCE ON THE ESTABLISHMENT OF HYBRID ZONES. Evolution; International Journal of Organic Evolution, 1996, 50, 2504-2509.	2.3	50
107	Natural Formation of Iris Hybrids: Experimental Evidence on the Establishment of Hybrid Zones. Evolution; International Journal of Organic Evolution, 1996, 50, 2504.	2.3	23