
George M Bodner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/307107/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Review of Biochemistry Education Research. Journal of Chemical Education, 2020, 97, 2091-2103.	2.3	13
2	Doing the Research that Informs Practice: A Retrospective View of One Group's Attempt to Study The Teaching and Learning of Organic Chemistry. Chemistry - an Asian Journal, 2017, 12, 1413-1420.	3.3	1
3	2. The quadruple bottom line: the advantages of incorporating Green Chemistry into the undergraduate chemistry major. , 2017, , .		1
4	The quadruple bottom line: the advantages of incorporating Green Chemistry into the undergraduate chemistry major. ChemistrySelect, 2017, 2, .	1.5	6
5	Biochemistry instructors' perceptions of analogies and their classroom use. Chemistry Education Research and Practice, 2015, 16, 731-746.	2.5	16
6	Culturing reality: How organic chemistry graduate students develop into practitioners. Journal of Research in Science Teaching, 2014, 51, 694-713.	3.3	35
7	Creation of an American Association of Chemistry Teachers. Journal of Chemical Education, 2014, 91, 3-5.	2.3	6
8	How To Avoid Common Mistakes When Searching for a Faculty Position. ACS Symposium Series, 2014, , 71-92.	0.5	0
9	Chemical reactions: what understanding do students with blindness develop?. Chemistry Education Research and Practice, 2013, 14, 625-636.	2.5	9
10	SECONDARY SCIENCE TEACHERS' DEVELOPMENT OF PEDAGOGICAL CONTENT KNOWLEDGE AS RESULT OF INTEGRATING NANOSCIENCE CONTENT IN THEIR CURRICULUM. Cosmos, 2013, 08, 187-209.	0.4	2
11	What Does it Mean to Design? A Qualitative Investigation of Design Professionals' Experiences. Journal of Engineering Education, 2012, 101, 187-219.	3.0	126
12	Instructors' Intended Learning Outcomes for Using Computational Simulations as Learning Tools. Journal of Engineering Education, 2012, 101, 220-243.	3.0	28
13	Using Students' Representations Constructed during Problem Solving To Infer Conceptual Understanding. Journal of Chemical Education, 2012, 89, 837-843.	2.3	39
14	Finding fulfillment: women's self-efficacy beliefs and career choices in chemistry. Chemistry Education Research and Practice, 2011, 12, 420-426.	2.5	32
15	Sixth-Grade Students' Views of the Nature of Engineering and Images of Engineers. Journal of Science Education and Technology, 2011, 20, 123-135.	3.9	83
16	Nonâ€mathematical problem solving in organic chemistry. Journal of Research in Science Teaching, 2010, 47, 643-660.	3.3	61
17	What can we do about â€~Parker'? A case study of a good student who didn't â€~get' organic chemistry. Chemistry Education Research and Practice, 2008, 9, 93-101.	2.5	93
18	Making sense of the arrow-pushing formalism among chemistry majors enrolled in organic chemistry. Chemistry Education Research and Practice, 2008, 9, 102-113.	2.5	130

George M Bodner

#	Article	IF	CITATIONS
19	Introduction: Research and practice in chemical education in advanced courses. Chemistry Education Research and Practice, 2008, 9, 81-83.	2.5	18
20	Providing a Voice: Qualitative Investigation of the Impact of a First‥ear Engineering Experience on Students' Efficacy Beliefs. Journal of Engineering Education, 2008, 97, 177-190.	3.0	101
21	Existence of a Problem-Solving Mindset among Students Taking Quantum Mechanics and Its Implications. ACS Symposium Series, 2007, , 155-173.	0.5	30
22	Program for the Division of Chemical Education: Chicago, March 25-29, 2007. Journal of Chemical Education, 2007, 84, 394.	2.3	0
23	Strengthening conceptual connections in introductory chemistry courses. Chemistry Education Research and Practice, 2007, 8, 93-100.	2.5	5
24	Locks and keys. Biochemistry and Molecular Biology Education, 2007, 35, 244-254.	1.2	31
25	Factors Influencing the Self-Efficacy Beliefs of First-Year Engineering Students. Journal of Engineering Education, 2006, 95, 39-47.	3.0	208
26	Contextual epistemic development in science: A comparison of chemistry students and research chemists. Science Education, 2006, 90, 468-495.	3.0	79
27	An analysis of the effectiveness of analogy use in college-level biochemistry textbooks. Journal of Research in Science Teaching, 2006, 43, 1040-1060.	3.3	59
28	Dishonesty in the biochemistry classroom laboratory: A synthesis of causes and prevention. Biochemistry and Molecular Biology Education, 2006, 34, 338-342.	1.2	7
29	"It Gets Me to the Product": How Students Propose Organic Mechanisms. Journal of Chemical Education, 2005, 82, 1402.	2.3	207
30	Students' perceptions of academic dishonesty in the chemistry classroom laboratory. Journal of Research in Science Teaching, 2004, 41, 47-64.	3.3	33
31	WHAT RESEARCH TELLS US ABOUT USING ANALOGIES TO TEACH CHEMISTRY. Chemistry Education Research and Practice, 2004, 5, 15-32.	2.5	59
32	Twenty Years of Learning: How To Do Research in Chemical Education. 2003 George C. Pimentel Award. Journal of Chemical Education, 2004, 81, 618.	2.3	24
33	The Many Forms of Constructivism. Journal of Chemical Education, 2001, 78, 1107.	2.3	166
34	CHEMiCALC (4000161) and CHEMiCALC Personal Tutor (4001108), Version 4.0 (Ramsay, O. Bertrand). Journal of Chemical Education, 1999, 76, 34.	2.3	4
35	What Happens When Discovery Laboratories Are Integrated into the Curriculum at a Large Research University?. The Chemical Educator, 1998, 3, 1-21.	0.0	15
36	Factors that Influence Chemistry Students? Decisions to ?Drop Out? of Graduate School. The Chemical Educator, 1997, 1, 1-12.	0.0	2

George M Bodner

#	Article	IF	CITATIONS
37	The Purdue Visualization of Rotations Test. The Chemical Educator, 1997, 2, 1-17.	0.0	229
38	Why changing the curriculum may not be enough. Journal of Chemical Education, 1992, 69, 186.	2.3	51
39	The beginning science teacher: Classroom narratives of convictions and constraints. Journal of Research in Science Teaching, 1992, 29, 471-485.	3.3	172
40	Problemâ€solving processes used by students in organic synthesis. International Journal of Science Education, 1991, 13, 143-158.	1.9	31
41	Spatial ability and its role in organic chemistry: A study of four organic courses. Journal of Research in Science Teaching, 1987, 24, 229-240.	3.3	167
42	A study of two measures of spatial ability as predictors of success in different levels of general chemistry. Journal of Research in Science Teaching, 1987, 24, 645-657.	3.3	137
43	The role of algorithms in teaching problem solving. Journal of Chemical Education, 1987, 64, 513.	2.3	58
44	Constructivism: A theory of knowledge. Journal of Chemical Education, 1986, 63, 873.	2.3	636
45	Cognitive restructuring as an early stage in problem solving. Journal of Research in Science Teaching, 1986, 23, 727-737.	3.3	102
46	Chemical education: Where we've been; where we are; where we're going. Journal of Chemical Education, 1984, 61, 843.	2.3	2