Jonathan S Bromberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3069460/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lipoxins modulate neutrophil oxidative burst, integrin expression and lymphatic transmigration differentially in human health and atherosclerosis. FASEB Journal, 2022, 36, e22173.	0.5	8
2	Clinically adjudicated deceased donor acute kidney injury and graft outcomes. PLoS ONE, 2022, 17, e0264329.	2.5	3
3	Archetypal Analysis of Injury in Kidney Transplant Biopsies Identifies Two Classes of Early AKI. Frontiers in Medicine, 2022, 9, 817324.	2.6	5
4	Clinical outcomes from the Assessing Donor-derived cell-free DNA Monitoring Insights of kidney Allografts with Longitudinal surveillance (ADMIRAL) study. Kidney International, 2022, 101, 793-803.	5.2	55
5	Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses. Cell Reports, 2022, 39, 110727.	6.4	1
6	PD-L1 signaling selectively regulates T cell lymphatic transendothelial migration. Nature Communications, 2022, 13, 2176.	12.8	18
7	Molecular diagnosis of ABMR with or without donor-specific antibody in kidney transplant biopsies: Differences in timing and intensity but similar mechanisms and outcomes. American Journal of Transplantation, 2022, 22, 1976-1991.	4.7	29
8	Lymph node fibroblastic reticular cells preserve a tolerogenic niche in allograft transplantation through laminin α4. Journal of Clinical Investigation, 2022, 132, .	8.2	17
9	Factors associated with kidney graft survival in pure antibody-mediated rejection at the time of indication biopsy: Importance of parenchymal injury but not disease activity. American Journal of Transplantation, 2021, 21, 1391-1401.	4.7	30
10	Simultaneous targeting of primary tumor, draining lymph node, and distant metastases through high endothelial venule-targeted delivery. Nano Today, 2021, 36, 101045.	11.9	24
11	Discovering novel injury features in kidney transplant biopsies associated with TCMR and donor aging. American Journal of Transplantation, 2021, 21, 1725-1739.	4.7	9
12	Precision Medicine in Kidney Transplantation: Just Hype or a Realistic Hope?. Transplantation Direct, 2021, 7, e650.	1.6	8
13	Contemporary incidence and risk factors of post transplant Erythrocytosis in deceased donor kidney transplantation. BMC Nephrology, 2021, 22, 26.	1.8	6
14	Dynamic Response of Donor-Derived Cell-Free DNA Following Treatment of Acute Rejection in Kidney Allografts. Kidney360, 2021, 2, 729-736.	2.1	16
15	Specialized Pro-Resolving Mediators and the Lymphatic System. International Journal of Molecular Sciences, 2021, 22, 2750.	4.1	9
16	Deceased-Donor Acute Kidney Injury and BK Polyomavirus in Kidney Transplant Recipients. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 765-775.	4.5	4
17	Causes of Renal Allograft Injury in Recipients With Normal Donor-derived Cell-free DNA. Transplantation Direct, 2021, 7, e679.	1.6	8
18	LTÎ ² R Signaling Controls Lymphatic Migration of Immune Cells. Cells, 2021, 10, 747.	4.1	10

#	Article	IF	CITATIONS
19	Deceased-Donor Kidney Biopsy Scoring Systems for Predicting Future Graft Function: A Comparative Study. Transplantation Proceedings, 2021, 53, 906-912.	0.6	8
20	Mechanisms of exTreg induction. European Journal of Immunology, 2021, 51, 1956-1967.	2.9	21
21	G-CSF promotes alloregulatory function of MDSCs through a c-Kit dependent mechanism. Cellular Immunology, 2021, 364, 104346.	3.0	10
22	Post-transplant Diabetes Mellitus in Kidney Transplant Recipients: A Multicenter Study. Kidney360, 2021, 2, 1296-1307.	2.1	9
23	Association between dd fDNA levels, de novo donor specific antibodies, and eGFR decline: An analysis of the DART cohort. Clinical Transplantation, 2021, 35, e14402.	1.6	5
24	Donor-Specific Antibody Is Associated with Increased Expression of Rejection Transcripts in Renal Transplant Biopsies Classified as No Rejection. Journal of the American Society of Nephrology: JASN, 2021, 32, 2743-2758.	6.1	27
25	Lymph node fibroblastic reticular cells steer immune responses. Trends in Immunology, 2021, 42, 723-734.	6.8	37
26	Clinical Validation of an Immune Quiescence Gene Expression Signature in Kidney Transplantation. Kidney360, 2021, 2, 1998-2009.	2.1	12
27	Renal Function Improvement Following ANG-3777 Treatment in Patients at High Risk for Delayed Graft Function After Kidney Transplantation. Transplantation, 2021, 105, 443-450.	1.0	12
28	Uromodulin to Osteopontin Ratio in Deceased Donor Urine Is Associated With Kidney Graft Outcomes. Transplantation, 2021, 105, 876-885.	1.0	10
29	Chronic rejection as a persisting phantom menace in organ transplantation: a new hope in the microbiota?. Current Opinion in Organ Transplantation, 2021, 26, 567-581.	1.6	2
30	Intra-Organ Delivery of Nanotherapeutics for Organ Transplantation. ACS Nano, 2021, 15, 17124-17136.	14.6	12
31	406.1: An Initial Analysis of the Baseline Levels of dd-cfDNA After Pancreas Transplantation: A Prospective Study From High-volume Centers in the United States. Transplantation, 2021, 105, S31-S31.	1.0	Ο
32	Characterization of Leptin Receptor+ Stromal Cells in Lymph Node. Frontiers in Immunology, 2021, 12, 730438.	4.8	3
33	Kidney-Draining Lymph Node Fibrosis Following Unilateral Ureteral Obstruction. Frontiers in Immunology, 2021, 12, 768412.	4.8	2
34	Efficacy and safety of bleselumab in kidney transplant recipients: A phase 2, randomized, open-label, noninferiority study. American Journal of Transplantation, 2020, 20, 159-171.	4.7	45
35	Unique and specific Proteobacteria diversity in urinary microbiota of tolerant kidney transplanted recipients. American Journal of Transplantation, 2020, 20, 145-158.	4.7	19
36	APOL1 Long-term Kidney Transplantation Outcomes Network (APOLLO): DesignÂandÂRationale. Kidney International Reports, 2020, 5, 278-288.	0.8	62

JONATHAN S BROMBERG

#	Article	IF	CITATIONS
37	Engineering Strategies to Improve Islet Transplantation for Type 1 Diabetes Therapy. ACS Biomaterials Science and Engineering, 2020, 6, 2543-2562.	5.2	14
38	Urine Injury Biomarkers Are Not Associated With Kidney Transplant Failure. Transplantation, 2020, 104, 1272-1279.	1.0	9
39	Survival benefit of renal transplantation in octogenarians. Clinical Transplantation, 2020, 34, e14074.	1.6	5
40	Donor-derived Cell-free DNA in Infections in Kidney Transplant Recipients: Case Series. Transplantation Direct, 2020, 6, e568.	1.6	18
41	Teamwork Makes the Dream Work: Maximizing Surgical Intervention at the Time of Living Donor Renal Transplantation. Transplantation Proceedings, 2020, 52, 731-736.	0.6	4
42	A Multidisciplinary Technique for Concurrent Panniculectomy–Living Donor Renal Transplantation. Annals of Plastic Surgery, 2020, 84, 455-462.	0.9	6
43	Nomenclature for kidney function and disease: report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney International, 2020, 97, 1117-1129.	5.2	407
44	Depletion of CD4 and CD8 Positive T Cells Impairs Venous Thrombus Resolution in Mice. International Journal of Molecular Sciences, 2020, 21, 1650.	4.1	10
45	High levels of dd-cfDNA identify patients with TCMR 1A and borderline allograft rejection at elevated risk of graft injury. American Journal of Transplantation, 2020, 20, 2491-2498.	4.7	87
46	Regulatory T Cells Condition Lymphatic Endothelia for Enhanced Transendothelial Migration. Cell Reports, 2020, 30, 1052-1062.e5.	6.4	27
47	Myeloid-derived suppressor cells expand after transplantation and their augmentation increases graft survival. American Journal of Transplantation, 2020, 20, 2343-2355.	4.7	20
48	Donor-derived Cell-free DNA and the Prediction of BK Virus-associated Nephropathy. Transplantation Direct, 2020, 6, e622.	1.6	25
49	The lymph node stromal laminin α5 shapes alloimmunity. Journal of Clinical Investigation, 2020, 130, 2602-2619.	8.2	21
50	Lymph node fibroblastic reticular cells deposit fibrosis-associated collagen following organ transplantation. Journal of Clinical Investigation, 2020, 130, 4182-4194.	8.2	16
51	It's complicated!. American Journal of Transplantation, 2019, 19, 2673-2674.	4.7	0
52	Assessing Pancreas Transplant Candidate Cardiac Disease: Preoperative Protocol Development at a Rapidly Growing Transplant Program. Methods and Protocols, 2019, 2, 82.	2.0	14
53	T Regulatory Cells and Priming the Suppressive Tumor Microenvironment. Frontiers in Immunology, 2019, 10, 2453.	4.8	156
54	Role of lymph node stroma and microenvironment in T cell tolerance. Immunological Reviews, 2019, 292, 9-23.	6.0	36

#	Article	IF	CITATIONS
55	Myeloid-derived suppressor cells are bound and inhibited by anti-thymocyte globulin. Innate Immunity, 2019, 25, 46-59.	2.4	11
56	Clinical outcomes of valganciclovir prophylaxis in highâ€risk (D+/Râ^') renal transplant recipients experiencing delayed graft function. Transplant Infectious Disease, 2019, 21, e13125.	1.7	5
57	Lysolipid receptor cross-talk regulates lymphatic endothelial junctions in lymph nodes. Journal of Experimental Medicine, 2019, 216, 1582-1598.	8.5	54
58	Cancerâ€ e ttributable mortality among solid organ transplant recipients in the United States: 1987 through 2014. Cancer, 2019, 125, 2647-2655.	4.1	34
59	Alemtuzumab induction and belatacept maintenance in marginal pathology renal allografts. Clinical Transplantation, 2019, 33, e13531.	1.6	2
60	CD4 T cell sphingosine 1-phosphate receptor (S1PR)1 and S1PR4 and endothelial S1PR2 regulate afferent lymphatic migration. Science Immunology, 2019, 4, .	11.9	70
61	Panniculectomy at the time of living donor renal transplantation: An 8-year experience. American Journal of Transplantation, 2019, 19, 2284-2293.	4.7	9
62	Differential Regulation of T-cell Immunity and Tolerance by Stromal Laminin Expressed in the Lymph Node. Transplantation, 2019, 103, 2075-2089.	1.0	26
63	Repeat kidney transplant recipients with active rejection have elevated donor-derived cell-free DNA. American Journal of Transplantation, 2019, 19, 1597-1598.	4.7	15
64	Deceased-donor acute kidney injury is not associated with kidney allograft failure. Kidney International, 2019, 95, 199-209.	5.2	62
65	Improving Vaccine and Immunotherapy Design Using Biomaterials. Trends in Immunology, 2018, 39, 135-150.	6.8	152
66	Myeloid-Derived Suppressor Cells and Their Potential Application in Transplantation. Transplantation, 2018, 102, 359-367.	1.0	49
67	Harnessing the lymph node microenvironment. Current Opinion in Organ Transplantation, 2018, 23, 73-82.	1.6	14
68	Donor-derived Cell-free DNA Identifies Antibody-mediated Rejection in Donor Specific Antibody Positive Kidney Transplant Recipients. Transplantation Direct, 2018, 4, e379.	1.6	84
69	Ectopic high endothelial venules in pancreatic ductal adenocarcinoma: A unique site for targeted delivery. EBioMedicine, 2018, 38, 79-88.	6.1	20
70	Diabetic nephropathy after kidney transplantation in patients with pretransplantation type II diabetes: A retrospective case series study from a highâ€volume center in the United States. Clinical Transplantation, 2018, 32, e13425.	1.6	2
71	Designing natural and synthetic immune tissues. Nature Materials, 2018, 17, 484-498.	27.5	78
72	Regulation of T cell afferent lymphatic migration by targeting LTβR-mediated non-classical NFκB signaling. Nature Communications, 2018, 9, 3020.	12.8	30

#	Article	IF	CITATIONS
73	Repetitive ischemic injuries to the kidneys result in lymph node fibrosis and impaired healing. JCI Insight, 2018, 3, .	5.0	29
74	Gut microbiota–dependent modulation of innate immunity and lymph node remodeling affects cardiac allograft outcomes. JCI Insight, 2018, 3, .	5.0	53
75	Targeted delivery of immune therapeutics to lymph nodes prolongs cardiac allograft survival. Journal of Clinical Investigation, 2018, 128, 4770-4786.	8.2	59
76	Cell-Free DNA and Active Rejection in Kidney Allografts. Journal of the American Society of Nephrology: JASN, 2017, 28, 2221-2232.	6.1	365
77	Complete Genome Sequence of a Strain of Bifidobacterium pseudolongum Isolated from Mouse Feces and Associated with Improved Organ Transplant Outcome. Genome Announcements, 2017, 5, .	0.8	7
78	A robust in vitro model for trans-lymphatic endothelial migration. Scientific Reports, 2017, 7, 1633.	3.3	27
79	Surgical complications of laparoendoscopic single-site donor nephrectomy: a retrospective study. Transplant International, 2017, 30, 1132-1139.	1.6	8
80	Regulation of the Immune System by Laminins. Trends in Immunology, 2017, 38, 858-871.	6.8	65
81	Biological Variation of Donor-Derived Cell-Free DNA in Renal Transplant Recipients: Clinical Implications. journal of applied laboratory medicine, The, 2017, 2, 309-321.	1.3	59
82	Recreational marijuana use is not associated with worse outcomes after renal transplantation. Clinical Transplantation, 2016, 30, 1340-1346.	1.6	56
83	Reprogramming the Local Lymph Node Microenvironment Promotes Tolerance that Is Systemic and Antigen Specific. Cell Reports, 2016, 16, 2940-2952.	6.4	127
84	BTLA + Dendritic Cells: The Regulatory T Cell Force Awakens. Immunity, 2016, 45, 956-958.	14.3	33
85	Treg engage lymphotoxin beta receptor for afferent lymphatic transendothelial migration. Nature Communications, 2016, 7, 12021.	12.8	54
86	IL-10 from marginal zone precursor B cells controls the differentiation of Th17, Tfh and Tfr cells in transplantation tolerance. Immunology Letters, 2016, 170, 52-63.	2.5	44
87	T-bet Regulates Natural Regulatory T Cell Afferent Lymphatic Migration and Suppressive Function. Journal of Immunology, 2016, 196, 2526-2540.	0.8	36
88	Murine Fibroblastic Reticular Cells From Lymph Node Interact With CD4+ T Cells Through CD40-CD40L. Transplantation, 2015, 99, 1561-1567.	1.0	15
89	Lymph Node Stromal Fiber ER-TR7 Modulates CD4+ T Cell Lymph Node Trafficking and Transplant Tolerance. Transplantation, 2015, 99, 1119-1125.	1.0	18
90	Interleukin-10 From Marginal Zone Precursor B-Cell Subset Is Required for Costimulatory Blockade-Induced Transplantation Tolerance. Transplantation, 2015, 99, 1817-1828.	1.0	41

#	Article	IF	CITATIONS
91	Alloantibodies and Allograft Arteriosclerosis. Circulation Research, 2015, 117, 398-400.	4.5	2
92	Islet implantation in a pocket. Nature Biotechnology, 2015, 33, 493-494.	17.5	4
93	Microbiota—implications for immunity and transplantation. Nature Reviews Nephrology, 2015, 11, 342-353.	9.6	47
94	Vascular Endothelial Growth Factor C/Vascular Endothelial Growth Factor Receptor 3 Signaling Regulates Chemokine Gradients and Lymphocyte Migration From Tissues to Lymphatics. Transplantation, 2015, 99, 668-677.	1.0	23
95	Surgical Site Infection after Renal Transplantation. Infection Control and Hospital Epidemiology, 2015, 36, 417-423.	1.8	48
96	Disappearance of T Cell-Mediated Rejection Despite Continued Antibody-Mediated Rejection in Late Kidney Transplant Recipients. Journal of the American Society of Nephrology: JASN, 2015, 26, 1711-1720.	6.1	163
97	Mechanistic similarities between trauma, atherosclerosis, and other inflammatory processes. Journal of Critical Care, 2015, 30, 1344-1348.	2.2	6
98	Biological sensors shed light on ligand geography. Nature Immunology, 2015, 16, 1209-1211.	14.5	0
99	Laminins affect T cell trafficking and allograft fate. Journal of Clinical Investigation, 2014, 124, 2204-2218.	8.2	71
100	Anatomy of tolerance. Current Opinion in Organ Transplantation, 2013, 18, 393-401.	1.6	9
101	NK Cells are Required for Costimulatory Blockade Induced Tolerance to Vascularized Allografts. Transplantation, 2012, 94, 575-584.	1.0	20
102	LITERATURE Watch:Implications for transplantation. American Journal of Transplantation, 2012, 12, 3169-3169.	4.7	1
103	Regulatory T Cell Induction, Migration, and Function in Transplantation. Journal of Immunology, 2012, 189, 4705-4711.	0.8	49
104	Massive ex Vivo Expansion of Human Natural Regulatory T Cells (T _{regs}) with Minimal Loss of in Vivo Functional Activity. Science Translational Medicine, 2011, 3, 83ra41.	12.4	326
105	Tolerance and Lymphoid Organ Structure and Function. Frontiers in Immunology, 2011, 2, 64.	4.8	19
106	Lymphangiogenesis Is Required for Pancreatic Islet Inflammation and Diabetes. PLoS ONE, 2011, 6, e28023.	2.5	33
107	Isletâ€expressed TLR2 and TLR4 sense injury and mediate early graft failure after transplantation. European Journal of Immunology, 2010, 40, 2914-2924.	2.9	48
108	Monocytic suppressive cells mediate cardiovascular transplantation tolerance in mice. Journal of Clinical Investigation, 2010, 120, 2486-2496.	8.2	190

#	Article	IF	CITATIONS
109	Epigenetic Regulation of Foxp3 Expression in Regulatory T Cells by DNA Methylation. Journal of Immunology, 2009, 182, 259-273.	0.8	498
110	Regulatory T Cells Sequentially Migrate from Inflamed Tissues to Draining Lymph Nodes to Suppress the Alloimmune Response. Immunity, 2009, 30, 458-469.	14.3	359
111	The sphingosine 1-phosphate receptor 1 causes tissue retention by inhibiting the entry of peripheral tissue T lymphocytes into afferent lymphatics. Nature Immunology, 2008, 9, 42-53.	14.5	232
112	Gr-1+CD115+ Immature Myeloid Suppressor Cells Mediate the Development of Tumor-Induced T Regulatory Cells and T-Cell Anergy in Tumor-Bearing Host. Cancer Research, 2006, 66, 1123-1131.	0.9	1,225
113	Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nature Immunology, 2006, 7, 652-662.	14.5	589
114	CD4+CD25+ Regulatory T-Cells Inhibit the Islet Innate Immune Response and Promote Islet Engraftment. Diabetes, 2006, 55, 1011-1021.	0.6	35
115	Lymph Node Occupancy Is Required for the Peripheral Development of Alloantigen-Specific <i>Foxp3</i> + Regulatory T Cells. Journal of Immunology, 2005, 174, 6993-7005.	0.8	169