Prem Lal Kashyap

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3068327/publications.pdf

Version: 2024-02-01

218677 214800 2,777 102 26 47 citations g-index h-index papers 115 115 115 2488 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Wheat endophytes and their potential role in managing abiotic stress under changing climate. Journal of Applied Microbiology, 2022, 132, 2501-2520.	3.1	14
2	Resistance inducers and their role in reinforcing wheat defense system against fungal pathogens. Journal of Cereal Research, 2022, 13, .	0.1	4
3	Switching to nanonutrients for sustaining agroecosystems and environment: the challenges and benefits in moving up from ionic to particle feeding. Journal of Nanobiotechnology, 2022, 20, 19.	9.1	51
4	Nanomaterials for Postharvest Management of Insect Pests: Current State and Future Perspectives. Frontiers in Nanotechnology, 2022, 3, .	4.8	19
5	Characterization of five new pathotypes of Puccinia triticina identified from Northeast India, Nepal, and Bangladesh. Australasian Plant Pathology, 2022, 51, 315-325.	1.0	6
6	Nanotechnology for Wheat and Barley Health Management: Current Scenario and Future Prospectus., 2022,, 337-363.		2
7	Induced Resistance for Sustainable Management of Wheat Diseases. Advances in Environmental Engineering and Green Technologies Book Series, 2022, , 385-408.	0.4	1
8	Field screening and identification of stable resistance sources in wheat germplasm against loose smut disease caused by Ustilago segetum var. tritici. Journal of Cereal Research, 2022, 14, .	0.1	1
9	Editorial: Plant Microbiome: Interactions, Mechanisms of Action, and Applications, Volume II. Frontiers in Microbiology, 2022, 13, .	3 . 5	O
10	Mycorrhizal fungi and its importance in plant health amelioration. , 2021, , 205-223.		2
11	New and emerging technologies for detecting Magnaporthe oryzae causing blast disease in crop plants. Crop Protection, 2021, 143, 105473.	2.1	15
12	Phyllosphere microbiome: modern prospectus and application., 2021,, 345-366.		4
13	Impact of climate change on insect pests of rice–wheat cropping system: recent trends and mitigation strategies. , 2021, , 225-239.		6
14	Enhancement in Plant Growth and Zinc Biofortification of Chickpea (Cicer arietinum L.) by Bacillus altitudinis. Journal of Soil Science and Plant Nutrition, 2021, 21, 922-935.	3.4	38
15	Identification of multiple rust resistant bread wheat genotypes. Journal of Cereal Research, 2021, 13, .	0.1	0
16	Tillage Intensity Influences Insect-Pest and Predator Dynamics of Wheat Crop Grown under Different Conservation Agriculture Practices in Rice-Wheat Cropping System of Indo-Gangetic Plain. Agronomy, 2021, 11, 1087.	3.0	11
17	Editorial: Plant Microbiome: Interactions, Mechanisms of Action, and Applications. Frontiers in Microbiology, 2021, 12, 706049.	3.5	8
18	Physiologic Specialization and Genetic Differentiation of <i>Puccinia triticina </i> Causing Leaf Rust of Wheat on the Indian Subcontinent During 2016 to 2019. Plant Disease, 2021, 105, 1992-2000.	1.4	12

#	Article	IF	Citations
19	Virulence and molecular diversity among Puccinia striiformis f. sp. tritici pathotypes identified in India between 2015 and 2019. Crop Protection, 2021, 148, 105717.	2.1	8
20	Plant virome: current understanding, mechanisms, and role in phytobiome., 2021,, 53-81.		2
21	A review of advances in bioremediation of heavy metals by microbes and plants. Journal of Natural Resource Conservation and Management, 2021, 2, 65.	0.3	3
22	Analysis of Biosynthetic Gene Clusters, Secretory, and Antimicrobial Peptides Reveals Environmental Suitability of Exiguobacterium profundum PHM11. Frontiers in Microbiology, 2021, 12, 785458.	3.5	6
23	Nanopesticides: Current status and scope for their application in agriculture. Plant Protection Science, 2021, 58, 1-17.	1.4	19
24	Plant growth promoting and antifungal activity in endophytic Bacillus strains from pearl millet (Pennisetum glaucum). Brazilian Journal of Microbiology, 2020, 51, 229-241.	2.0	51
25	Functional characterization of endophytic bacilli from pearl millet (<i>Pennisetum glaucum</i>) and their possible role in multiple stress tolerance. Plant Biosystems, 2020, 154, 503-514.	1.6	47
26	Development and characterization of novel microsatellite markers in Puccinia striiformis f.sp. tritici and their transferability in Puccinia species. Journal of Phytopathology, 2020, 168, 120-128.	1.0	3
27	Biocontrol Potential of Salt-Tolerant Trichoderma and Hypocrea Isolates for the Management of Tomato Root Rot Under Saline Environment. Journal of Soil Science and Plant Nutrition, 2020, 20, 160-176.	3.4	41
28	Panâ€genome analysis of <i>Exiguobacterium</i> reveals species delineation and genomic similarity with <i>Exiguobacterium profundum</i> ÂPHM 11. Environmental Microbiology Reports, 2020, 12, 639-650.	2.4	7
29	Karnal Bunt: A Re-Emerging Old Foe of Wheat. Frontiers in Plant Science, 2020, 11, 569057.	3.6	30
30	Molecular Diagnostic Assay for Rapid Detection of Flag Smut Fungus (Urocystis agropyri) in Wheat Plants and Field Soil. Frontiers in Plant Science, 2020, 11, 1039.	3.6	12
31	A rapid colorimetric LAMP assay for detection of Rhizoctonia solani AG-1 IA causing sheath blight of rice. Scientific Reports, 2020, 10, 22022.	3.3	16
32	Microbes for Cold Stress Resistance in Plants: Mechanism, Opportunities, and Challenges. Rhizosphere Biology, 2020, , 269-292.	0.6	7
33	Identification of Novel Microsatellite Markers to Assess the Population Structure and Genetic Differentiation of Ustilago hordei Causing Covered Smut of Barley. Frontiers in Microbiology, 2020, 10, 2929.	3.5	8
34	Bacterial endophyte mediated plant tolerance to salinity: growth responses and mechanisms of action. World Journal of Microbiology and Biotechnology, 2020, 36, 26.	3.6	57
35	Zinc-Solubilizing Microbes for Sustainable Crop Production: Current Understanding, Opportunities, and Challenges., 2020,, 281-298.		9
36	Detection and Diagnosis of Seed-Borne Viruses and Virus-Like Pathogens. , 2020, , 169-199.		8

#	Article	IF	CITATIONS
37	Development and evaluation of high yielding, multiple disease resistant bread wheat variety - Karan Vandana (DBW187). Journal of Cereal Research, 2020, 12, .	0.1	1
38	Nanotechnology in Wheat Production and Protection. Environmental Chemistry for A Sustainable World, 2020, , 165-194.	0.5	10
39	Population Biology of Wheat Blast Pathogen. , 2020, , 19-34.		1
40	Identification and Diagnosis of Wheat Blast. , 2020, , 35-52.		0
41	Disease Spectrum in Wheat and Barley Under Different Agro-Ecological Conditions in India and Management Strategies. , 2020, , 57-79.		2
42	DBW222 (Karan Narendra): A new high-yielding, lodging-tolerant wheat variety for North Western plains of India. Crop Breeding and Applied Biotechnology, 2020, 20, .	0.4	1
43	Isolation and characterization of halotolerant bacilli from chickpea (Cicer arietinum L.) rhizosphere for plant growth promotion and biocontrol traits. European Journal of Plant Pathology, 2019, 153, 787-800.	1.7	35
44	Deciphering rhizosphere microbiome for the development of novel bacterial consortium and its evaluation for salt stress management in solanaceous crops in India. Indian Phytopathology, 2019, 72, 479-488.	1.2	17
45	Draft genome sequence of a cold-adapted phosphorous-solubilizing Pseudomonas koreensis P2 isolated from Sela Lake, India. 3 Biotech, 2019, 9, 256.	2.2	16
46	Phylogeography and Population Structure Analysis Reveal Diversity by Gene Flow and Mutation in Ustilago segetum (Pers.) Roussel tritici Causing Loose Smut of Wheat. Frontiers in Microbiology, 2019, 10, 1072.	3.5	13
47	noxB-based marker for Alternaria spp.: a new diagnostic marker for specific and early detection in crop plants. 3 Biotech, 2019, 9, 249.	2.2	9
48	Virulence and molecular analysis of atypical pathotypes of yellow rust pathogen in India. Indian Phytopathology, 2019, 72, 187-194.	1.2	3
49	Characterization of three new Yr9-virulences and identification of sources of resistance among recently developed Indian bread wheat germplasm. Journal of Plant Pathology, 2019, 101, 955-963.	1.2	46
50	Molecular detection and in silico characterization of cold shock protein coding gene (cspA) from cold adaptive Pseudomonas koreensis. Journal of Plant Biochemistry and Biotechnology, 2019, 28, 405-413.	1.7	12
51	Draft Genome Sequence of Halotolerant Bacterium Chromohalobacter salexigens ANJ207, Isolated from Salt Crystal Deposits in Pipelines. Microbiology Resource Announcements, 2019, 8, .	0.6	10
52	Morphological characterization and screening for sheath blight resistance using Indian isolates of Rhizoctonia solani AG1IA. Indian Phytopathology, 2019, 72, 107-124.	1.2	8
53	Stage-specific reprogramming of defense responsive genes during Lr24-mediated leaf rust resistance in wheat. Journal of Plant Pathology, 2019, 101, 283-293.	1.2	16
54	Nanosensors for Plant Disease Diagnosis: Current Understanding and Future Perspectives. , 2019, , 189-205.		13

#	Article	IF	CITATIONS
55	Difenoconazole: A new seed dressing molecule for effective management of flag smut (Urocystis) Tj ETQq1 1 0.78	84314 rgB7	Γ ₂ Overlock
56	Efficacy of few selected insecticides for the management of foliar aphid complex in barley. Journal of Cereal Research, $2019,10,1$	0.2	0
57	Effect of weather variables on the incidence of yellow stem borer (Scirpophaga incertulas W.) and leaf folder (Cnaphalocrocis medinalis G.) in rice. Journal of Cereal Research, 2019, 11, .	0.2	3
58	Population distribution and differentiation of Puccinia graminis tritici detected in the Indian subcontinent during 2009–2015. Crop Protection, 2018, 108, 128-136.	2.1	42
59	Temporal Transcriptional Changes in SAR and Sugar Transport-Related Genes During Wheat and Leaf Rust Pathogen Interactions. Journal of Plant Growth Regulation, 2018, 37, 826-839.	5.1	17
60	Induction of systemic tolerance to <i>Tilletia indica</i> in wheat by plant defence activators. Archives of Phytopathology and Plant Protection, 2018, 51, 1-13.	1.3	9
61	Genome-Wide Analysis of Microsatellites in Alternaria arborescens and Elucidation of the Function of Polyketide Synthase (PksJ). Interdisciplinary Sciences, Computational Life Sciences, 2018, 10, 813-822.	3.6	6
62	Molecular breeding technologies and strategies for rust resistance in wheat (<i>Triticum) Tj ETQq0 0 0 rgBT /Over</i>	lock 10 Tf	50 462 Td (
63	First <i>De Novo</i> Draft Genome Sequence of the Pathogenic Fungus Fusarium udum F02845, Associated with Pigeonpea (Cajanus cajan L. Millspaugh) Wilt. Microbiology Resource Announcements, 2018, 7, .	0.6	9
64	Ecology, Population Biology and Management of Chilli Anthracnose. Sustainable Agriculture Reviews, 2018, , 361-388.	1.1	0
65	Antibiotic gene specific characterization and ARDRA analysis of native isolates of Pseudomonas spp. from Jammu, India. Indian Phytopathology, 2018, 71, 225-233.	1.2	6
66	Halotolerant Exiguobacterium profundum PHM11 Tolerate Salinity by Accumulating L-Proline and Fine-Tuning Gene Expression Profiles of Related Metabolic Pathways. Frontiers in Microbiology, 2018, 9, 423.	3.5	25
67	Exploitation of Multifarious Abiotic Stresses, Antagonistic Activity and Plant Growth Promoting Attributes of Bacillus amyloliquefaciens AH53 for Sustainable Agriculture Production. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 751-763.	0.1	12
68	Nanotechnology Scope and Applications for Wheat Production and Quality Enhancement: A Review of Recent Advances. Journal of Cereal Research, 2018, 10, .	0.2	21
69	Population genetic structure of Rhizoctonia solani AG1IA from rice field in North India. Phytoparasitica, 2017, 45, 299-316.	1.2	19
7 0	Trichoderma for climate resilient agriculture. World Journal of Microbiology and Biotechnology, 2017, 33, 155.	3.6	86
71	Nanodiagnostics for plant pathogens. Environmental Chemistry Letters, 2017, 15, 7-13.	16.2	76
72	Genetic engineering approaches to enhance oil content in oilseed crops. Plant Growth Regulation, 2017, 83, 207-222.	3.4	19

#	Article	IF	CITATIONS
73	Identifying some additional rust resistance genes in Indian wheat varieties using robust markers. Cereal Research Communications, 2017, 45, 633-646.	1.6	17
74	DNA Barcoding for Diagnosis and Monitoring of Fungal Plant Pathogens. Fungal Biology, 2017, , 87-122.	0.6	23
75	RNA interference- a novel approach for plant disease management. Journal of Applied and Natural Science, 2017, 9, 1612-1618.	0.4	9
76	Evolution, Adaptation, and Host Selection by Plant Viruses: Current Understanding and Future Perspectives., 2017,, 221-258.		0
77	Deciphering the salinity adaptation mechanism in <i>Penicilliopsis clavariiformis</i> AP, a rare salt tolerant fungus from mangrove. Journal of Basic Microbiology, 2016, 56, 779-791.	3.3	9
78	Identification, characterization and phylogenetic analysis of antifungal Trichoderma from tomato rhizosphere. SpringerPlus, 2016, 5, 1939.	1.2	55
79	Bacterial xylanases: biology to biotechnology. 3 Biotech, 2016, 6, 150.	2.2	132
80	Nanotechnology for the Detection and Diagnosis of Plant Pathogens. Sustainable Agriculture Reviews, 2016, , 253-276.	1.1	35
81	Genetic diversity, mating types and phylogenetic analysis of Indian races of Fusarium oxysporum f. sp. ciceris from chickpea. Archives of Phytopathology and Plant Protection, 2016, 49, 533-553.	1.3	24
82	Isolation and characterization of biosurfactant producing Bacillus sp. from diesel fuel-contaminated site. Microbiology, 2016, 85, 56-62.	1.2	23
83	Comparative analysis of microsatellites in five different antagonistic Trichoderma species for diversity assessment. World Journal of Microbiology and Biotechnology, 2016, 32, 8.	3.6	36
84	Mating type genes and genetic markers to decipher intraspecific variability among <i>Fusarium udum</i> isolates from pigeonpea. Journal of Basic Microbiology, 2015, 55, 846-856.	3.3	24
85	Comparison of molecular and phenetic typing methods to assess diversity of selected members of the genus Bacillus. Microbiology, 2015, 84, 236-246.	1.2	8
86	Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules, 2015, 77, 36-51.	7.5	519
87	Characterization of antagonisticâ€potential of two <i>Bacillus</i> strains and their biocontrol activity against <i>Rhizoctonia solani</i> in tomato. Journal of Basic Microbiology, 2015, 55, 82-90.	3.3	40
88	Deciphering Diversity of Salt-Tolerant Bacilli from Saline Soils of Eastern Indo-gangetic Plains of India. Geomicrobiology Journal, 2015, 32, 170-180.	2.0	51
89	Identification and Characterization of Microsatellite from Alternaria brassicicola to Assess Cross-Species Transferability and Utility as a Diagnostic Marker. Molecular Biotechnology, 2014, 56, 1049-1059.	2.4	38
90	Isolation and characterization of siderophore producing antagonistic rhizobacteria against <i>Rhizoctonia solani</i> . Journal of Basic Microbiology, 2014, 54, 585-597.	3.3	66

#	Article	IF	Citations
91	Multifarious plant growth promoting characteristics of chickpea rhizosphere associated Bacilli help to suppress soil-borne pathogens. Plant Growth Regulation, 2014, 73, 91-101.	3.4	62
92	Identification and characterization of ethanol utilizing fungal flora of oil refinery contaminated soil. World Journal of Microbiology and Biotechnology, 2014, 30, 705-714.	3.6	9
93	Optimization of media components for chitinase production by chickpea rhizosphere associated ⟨i>Lysinibacillus fusiformis⟨ i> B M18. Journal of Basic Microbiology, 2013, 53, 451-460.	3.3	42
94	Cross-species transferability of microsatellite markers from Fusarium oxysporum for the assessment of genetic diversity in Fusarium udum. Phytoparasitica, 2013, 41, 615-622.	1.2	27
95	Myconanotechnology in agriculture: a perspective. World Journal of Microbiology and Biotechnology, 2013, 29, 191-207.	3.6	106
96	Rapid detection and quantification of Alternaria solani in tomato. Scientia Horticulturae, 2013, 151, 184-189.	3.6	59
97	Computational Mining and Genome Wide Distribution of Microsatellite in Fusarium oxysporum f. sp. lycopersici. Notulae Scientia Biologicae, 2012, 4, 127-131.	0.4	16
98	Diversity and antagonistic potential of <i>Bacillus </i> spp. associated to the rhizosphere of tomato for the management of <i>Rhizoctonia solani </i> Biocontrol Science and Technology, 2012, 22, 203-217.	1.3	62
99	Genes of Microorganisms: Paving Way to Tailor Next Generation Fungal Disease Resistant Crop Plants. Notulae Scientia Biologicae, 2011, 3, 147-157.	0.4	9
100	Plant defense activation and management of tomato root rot by a chitin-fortified Trichoderma/Hypocrea formulation. Phytoparasitica, 2011, 39, 471-481.	1.2	53
101	Biotechnological Approaches for Host Plant Resistance to Insect Pests. Frontiers in Genetics, 0, 13, .	2.3	14
102	Transcriptome Analysis to Understand Salt Stress Regulation Mechanism of Chromohalobacter salexigens ANJ207. Frontiers in Microbiology, 0, 13, .	3.5	8