Marta Ruiz-ortega

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3067263/publications.pdf

Version: 2024-02-01

23567 26613 12,939 163 58 107 citations h-index g-index papers 166 166 166 14642 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	RICORS2040: the need for collaborative research in chronic kidney disease. CKJ: Clinical Kidney Journal, 2022, 15, 372-387.	2.9	45
2	Antifibrotic Agents for the Management of CKD: A Review. American Journal of Kidney Diseases, 2022, 80, 251-263.	1.9	31
3	Molecular Mechanisms of Kidney Injury and Repair. International Journal of Molecular Sciences, 2022, 23, 1542.	4.1	29
4	Epigenetic Modulation of Gremlin-1/NOTCH Pathway in Experimental Crescentic Immune-Mediated Glomerulonephritis. Pharmaceuticals, 2022, 15, 121.	3.8	5
5	CCN2 Binds to Tubular Epithelial Cells in the Kidney. Biomolecules, 2022, 12, 252.	4.0	5
6	Kidney microRNA Expression Pattern in Type 2 Diabetic Nephropathy in BTBR Ob/Ob Mice. Frontiers in Pharmacology, 2022, 13, 778776.	3.5	6
7	FC089: The Absence of Sting Prevents Peritoneal Damage in a Murine Model of Peritoneal Fibrosis. Nephrology Dialysis Transplantation, 2022, 37, .	0.7	O
8	Demethylation of H3K9 and H3K27 Contributes to the Tubular Renal Damage Triggered by Endoplasmic Reticulum Stress. Antioxidants, 2022, 11, 1355.	5.1	7
9	Tubular Mitochondrial Dysfunction, Oxidative Stress, and Progression of Chronic Kidney Disease. Antioxidants, 2022, 11, 1356.	5.1	27
10	Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis. Journal of Clinical Investigation, 2021, 131, .	8.2	147
11	PANDEMIC: THE PHANTOM MENACE: LEARNING GENETIC ENGINEERING BY A GAME-BASED METHODOLOGY. , 2021, , .		O
12	Bisphenol A Modulates Autophagy and Exacerbates Chronic Kidney Damage in Mice. International Journal of Molecular Sciences, 2021, 22, 7189.	4.1	28
13	Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis. Clinical Science, 2021, 135, 1999-2029.	4.3	32
14	The receptor activator of nuclear factor $\hat{l}^{\hat{l}}$ ligandÂreceptor leucine-rich repeat-containing G-protein-coupled receptor 4Âcontributes to parathyroid hormone-induced vascular calcification. Nephrology Dialysis Transplantation, 2021, 36, 618-631.	0.7	13
15	Deletion of deltaâ€like 1 homologue accelerates renal inflammation by modulating the Th17 immune response. FASEB Journal, 2021, 35, e21213.	0.5	5
16	CCN2 Aggravates the Immediate Oxidative Stress–DNA Damage Response following Renal Ischemia–Reperfusion Injury. Antioxidants, 2021, 10, 2020.	5.1	19
17	Epigenetic Modifiers as Potential Therapeutic Targets in Diabetic Kidney Disease. International Journal of Molecular Sciences, 2020, 21, 4113.	4.1	37
18	Statins: Could an old friend help in the fight against COVIDâ€19?. British Journal of Pharmacology, 2020, 177, 4873-4886.	5.4	101

2

#	Article	IF	CITATIONS
19	Special Issue "Diabetic Nephropathy: Diagnosis, Prevention and Treatment― Journal of Clinical Medicine, 2020, 9, 813.	2.4	57
20	Molecular pathways driving omeprazole nephrotoxicity. Redox Biology, 2020, 32, 101464.	9.0	36
21	Targeting the progression of chronic kidney disease. Nature Reviews Nephrology, 2020, 16, 269-288.	9.6	428
22	Could IL-17A Be a Novel Therapeutic Target in Diabetic Nephropathy?. Journal of Clinical Medicine, 2020, 9, 272.	2.4	32
23	Protective role of renal proximal tubular alpha-synuclein in the pathogenesis of kidney fibrosis. Nature Communications, 2020, 11 , 1943 .	12.8	43
24	Interleukin-17A induces vascular remodeling of small arteries and blood pressure elevation. Clinical Science, 2020, 134, 513-527.	4.3	31
25	IL-17A as a Potential Therapeutic Target for Patients on Peritoneal Dialysis. Biomolecules, 2020, 10, 1361.	4.0	12
26	Inflammatory and Fibrotic Mediators in Renal Diseases. Mediators of Inflammation, 2019, 2019, 1-2.	3.0	4
27	Interleukin 17A Participates in Renal Inflammation Associated to Experimental and Human Hypertension. Frontiers in Pharmacology, 2019, 10, 1015.	3 . 5	36
28	Bromodomain and Extraterminal Proteins as Novel Epigenetic Targets for Renal Diseases. Frontiers in Pharmacology, 2019, 10, 1315.	3. 5	66
29	Advances in understanding the role of angiotensin-regulated proteins in kidney diseases. Expert Review of Proteomics, 2019, 16, 77-92.	3.0	22
30	Análisis de la vÃa Notch como una posible diana terapéutica en la patologÃa renal. Nefrologia, 2018, 38, 466-475.	0.4	9
31	TWEAK and RIPK1 mediate a second wave of cell death during AKI. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4182-4187.	7.1	112
32	Targeting epigenetic DNA and histone modifications to treat kidney disease. Nephrology Dialysis Transplantation, 2018, 33, 1875-1886.	0.7	83
33	Targeting of regulated necrosis in kidney disease. Nefrologia, 2018, 38, 125-135.	0.4	35
34	Connective tissue growth factor induces renal fibrosis via epidermal growth factor receptor activation. Journal of Pathology, 2018, 244, 227-241.	4.5	51
35	Role of Epidermal Growth Factor Receptor (EGFR) and Its Ligands in Kidney Inflammation and Damage. Mediators of Inflammation, 2018, 2018, 1-22.	3.0	93
36	Epigenetic Modification Mechanisms Involved in Inflammation and Fibrosis in Renal Pathology. Mediators of Inflammation, 2018, 2018, 1-14.	3.0	49

#	Article	IF	Citations
37	Gremlin Regulates Tubular Epithelial to Mesenchymal Transition via VEGFR2: Potential Role in Renal Fibrosis. Frontiers in Pharmacology, 2018, 9, 1195.	3.5	29
38	FP215MOLECULAR MECHANISMS OF OMEPRAZOLE NEPHROTOXICITY. Nephrology Dialysis Transplantation, 2018, 33, i103-i103.	0.7	0
39	Ferroptosis, but Not Necroptosis, Is Important in Nephrotoxic Folic Acid–Induced AKI. Journal of the American Society of Nephrology: JASN, 2017, 28, 218-229.	6.1	356
40	High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation. Free Radical Biology and Medicine, 2017, 104, 165-177.	2.9	241
41	Deferasirox-induced iron depletion promotes BclxL downregulation and death of proximal tubular cells. Scientific Reports, 2017, 7, 41510.	3.3	27
42	Atrasentan for the treatment of diabetic nephropathy. Expert Opinion on Investigational Drugs, 2017, 26, 741-750.	4.1	34
43	Regulation of miR-29b and miR-30c by vitamin D receptor activators contributes to attenuate uraemia-induced cardiac fibrosis. Nephrology Dialysis Transplantation, 2017, 32, 1831-1840.	0.7	40
44	Bcl3: a regulator of NF-κB inducible by TWEAK in acute kidney injury with anti-inflammatory and antiapoptotic properties in tubular cells. Experimental and Molecular Medicine, 2017, 49, e352-e352.	7.7	42
45	Translational science in chronic kidney disease. Clinical Science, 2017, 131, 1617-1629.	4.3	15
46	Inhibition of Bromodomain and Extraterminal Domain Family Proteins Ameliorates Experimental Renal Damage. Journal of the American Society of Nephrology: JASN, 2017, 28, 504-519.	6.1	56
47	<scp>MXRA</scp> 5 is a <scp>TGF</scp> â€Î²1â€regulated human protein with antiâ€inflammatory and antiâ€fibrotic properties. Journal of Cellular and Molecular Medicine, 2017, 21, 154-164.	3.6	60
48	2017 update on the relationship between diabetes and colorectal cancer: epidemiology, potential molecular mechanisms and therapeutic implications. Oncotarget, 2017, 8, 18456-18485.	1.8	134
49	Oxidative Stress in Disease and Aging: Mechanisms and Therapies. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-2.	4.0	39
50	Downregulation of kidney protective factors by inflammation: role of transcription factors and epigenetic mechanisms. American Journal of Physiology - Renal Physiology, 2016, 311, F1329-F1340.	2.7	52
51	Histone lysine-crotonylation in acute kidney injury. DMM Disease Models and Mechanisms, 2016, 9, 633-45.	2.4	94
52	Calcineurin inhibitors cyclosporine A and tacrolimus induce vascular inflammation and endothelial activation through TLR4 signaling. Scientific Reports, 2016, 6, 27915.	3.3	86
53	Non-canonical NFκB activation promotes chemokine expression in podocytes. Scientific Reports, 2016, 6, 28857.	3.3	28
54	Out of the TWEAKlight: Elucidating the Role of Fn14 and TWEAK in Acute Kidney Injury. Seminars in Nephrology, 2016, 36, 189-198.	1.6	37

#	Article	IF	Citations
55	Targeting inflammation in diabetic kidney disease: early clinical trials. Expert Opinion on Investigational Drugs, 2016, 25, 1045-1058.	4.1	68
56	NFκBiz protein downregulation in acute kidney injury: Modulation of inflammation and survival in tubular cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 635-646.	3.8	26
57	The inflammatory cytokine TWEAK decreases PGC-1α expression and mitochondrial function in acute kidney injury. Kidney International, 2016, 89, 399-410.	5.2	103
58	Angiotensin receptors and \hat{l}^2 -catenin regulate brain endothelial integrity in malaria. Journal of Clinical Investigation, 2016, 126, 4016-4029.	8.2	52
59	Horizon 2020 in Diabetic Kidney Disease: The Clinical Trial Pipeline for Add-On Therapies on Top of Renin Angiotensin System Blockade. Journal of Clinical Medicine, 2015, 4, 1325-1347.	2.4	50
60	T Helper 17/Regulatory T Cell Balance and Experimental Models of Peritoneal Dialysis-Induced Damage. BioMed Research International, 2015, 2015, 1-9.	1.9	15
61	Paricalcitol Inhibits Aldosterone-Induced Proinflammatory Factors by Modulating Epidermal Growth Factor Receptor Pathway in Cultured Tubular Epithelial Cells. BioMed Research International, 2015, 2015, 1-13.	1.9	19
62	TGF-Beta Blockade Increases Renal Inflammation Caused by the C-Terminal Module of the CCN2. Mediators of Inflammation, 2015, 2015, 1-10.	3.0	16
63	Association between the IL17RA rs4819554 polymorphism and reduced renal filtration rate in the Spanish RENASTUR cohort. Human Immunology, 2015, 76, 75-78.	2.4	18
64	TNF-related weak inducer of apoptosis (TWEAK) regulates junctional proteins in tubular epithelial cells via canonical NF-κB pathway and ERK activation. Journal of Cellular Physiology, 2015, 230, 1580-1593.	4.1	36
65	Lyso-Gb3 activates Notch1 in human podocytes. Human Molecular Genetics, 2015, 24, 5720-5732.	2.9	105
66	Gremlin regulates renal inflammation via the vascular endothelial growth factor receptor 2 pathway. Journal of Pathology, 2015, 236, 407-420.	4.5	56
67	Biocompatibility Reduces Inflammation-Induced Apoptosis in Mesothelial Cells Exposed to Peritoneal Dialysis Fluid. Blood Purification, 2015, 39, 200-209.	1.8	16
68	Angiotensin II, via angiotensin receptor type 1 /nuclear factor- \hat{l}^e B activation, causes a synergistic effect on interleukin- 1 - \hat{l}^2 -induced inflammatory responses in cultured mesangial cells. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2015, 16, 23-32.	1.7	23
69	Designing drugs that combat kidney damage. Expert Opinion on Drug Discovery, 2015, 10, 541-556.	5.0	26
70	Translational value of animal models of kidney failure. European Journal of Pharmacology, 2015, 759, 205-220.	3.5	67
71	Tubular overexpression of Gremlin in transgenic mice aggravates renal damage in diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2015, 309, F559-F568.	2.7	40
72	Up-regulation of the kinin B2 receptor pathway modulates the TGF- \hat{l}^2 /Smad signaling cascade to reduce renal fibrosis induced by albumin. Peptides, 2015, 73, 7-19.	2.4	12

#	Article	IF	CITATIONS
73	Targeting of Gamma-Glutamyl-Cysteine Ligase by miR-433 Reduces Glutathione Biosynthesis and Promotes TGF-Î ² -Dependent Fibrogenesis. Antioxidants and Redox Signaling, 2015, 23, 1092-1105.	5.4	49
74	The C-Terminal Module IV of Connective Tissue Growth Factor, Through EGFR/Nox1 Signaling, Activates the NF-κB Pathway and Proinflammatory Factors in Vascular Smooth Muscle Cells. Antioxidants and Redox Signaling, 2015, 22, 29-47.	5.4	32
75	Angiotensin II Moderately Decreases Plasmodium Infection and Experimental Cerebral Malaria in Mice. PLoS ONE, 2015, 10, e0138191.	2.5	21
76	Tubular Overexpression of Gremlin Induces Renal Damage Susceptibility in Mice. PLoS ONE, 2014, 9, e101879.	2.5	34
77	Gremlin Activates the Smad Pathway Linked to Epithelial Mesenchymal Transdifferentiation in Cultured Tubular Epithelial Cells. BioMed Research International, 2014, 2014, 1-11.	1.9	44
78	Integrin-linked kinase plays a key role in the regulation of angiotensin II-induced renal inflammation. Clinical Science, 2014, 127, 19-31.	4.3	39
79	Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and kidney disease. Current Opinion in Nephrology and Hypertension, 2014, 23, 93-100.	2.0	19
80	Macrophages and Recently Identified Forms of Cell Death. International Reviews of Immunology, 2014, 33, 9-22.	3.3	14
81	Endogenous NAMPT dampens chemokine expression and apoptotic responses in stressed tubular cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 293-303.	3.8	15
82	IL-17A is a novel player in dialysis-induced peritoneal damage. Kidney International, 2014, 86, 303-315.	5.2	74
83	Unilateral ureteral obstruction: beyond obstruction. International Urology and Nephrology, 2014, 46, 765-776.	1.4	157
84	TWEAK Promotes Peritoneal Inflammation. PLoS ONE, 2014, 9, e90399.	2.5	21
85	Paricalcitol Reduces Peritoneal Fibrosis in Mice through the Activation of Regulatory T Cells and Reduction in IL-17 Production. PLoS ONE, 2014, 9, e108477.	2.5	55
86	Soluble Co-Signaling Molecules Predict Long-Term Graft Outcome in Kidney-Transplanted Patients. PLoS ONE, 2014, 9, e113396.	2.5	6
87	Translational study of the Notch pathway in hypertensive nephropathy. Nefrologia, 2014, 34, 369-76.	0.4	11
88	TNF-related weak inducer of apoptosis (TWEAK) promotes kidney fibrosis and Ras-dependent proliferation of cultured renal fibroblast. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1744-1755.	3.8	88
89	3,4-DGE is cytotoxic and decreases HSP27/HSPB1 in podocytes. Archives of Toxicology, 2013, 88, 597-608.	4.2	21
90	Fn14 in podocytes and proteinuric kidney disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 2232-2243.	3.8	50

#	Article	IF	CITATIONS
91	The C-terminal module IV of connective tissue growth factor is a novel immune modulator of the Th17 response. Laboratory Investigation, 2013, 93, 812-824.	3.7	42
92	Connective tissue growth factor is a new ligand of epidermal growth factor receptor. Journal of Molecular Cell Biology, 2013, 5, 323-335.	3.3	54
93	<scp>TWEAK</scp> transactivation of the epidermal growth factor receptor mediates renal inflammation. Journal of Pathology, 2013, 231, 480-494.	4.5	48
94	A Polymeric Nanomedicine Diminishes Inflammatory Events in Renal Tubular Cells. PLoS ONE, 2013, 8, e51992.	2.5	35
95	Osteoprotegerin in Exosome-Like Vesicles from Human Cultured Tubular Cells and Urine. PLoS ONE, 2013, 8, e72387.	2.5	51
96	GSK3, Snail, and Adhesion Molecule Regulation by Cyclosporine A in Renal Tubular Cells. Toxicological Sciences, 2012, 127, 425-437.	3.1	31
97	HSP27/HSPB1 as an adaptive podocyte antiapoptotic protein activated by high glucose and angiotensin II. Laboratory Investigation, 2012, 92, 32-45.	3.7	55
98	Pharmacological modulation of peritoneal injury induced by dialysis fluids: is it an option?. Nephrology Dialysis Transplantation, 2012, 27, 478-481.	0.7	18
99	Association between a common KCNJ11 polymorphism (rs5219) and new-onset posttransplant diabetes in patients treated with Tacrolimus. Molecular Genetics and Metabolism, 2012, 105, 525-527.	1.1	27
100	TWEAK (tumor necrosis factor–like weak inducer of apoptosis) activates CXCL16 expression during renal tubulointerstitial inflammation. Kidney International, 2012, 81, 1098-1107.	5.2	61
101	Inflammatory Cytokines and Survival Factors from Serum Modulate Tweak-Induced Apoptosis in PC-3 Prostate Cancer Cells. PLoS ONE, 2012, 7, e47440.	2.5	18
102	Angiotensin II Contributes to Renal Fibrosis Independently of Notch Pathway Activation. PLoS ONE, 2012, 7, e40490.	2.5	37
103	<i>KCNQ1</i> gene variants and risk of newâ€onset diabetes in tacrolimusâ€treated renalâ€transplanted patients. Clinical Transplantation, 2011, 25, E284-91.	1.6	29
104	Glutamatergic Signaling Maintains the Epithelial Phenotype of Proximal Tubular Cells. Journal of the American Society of Nephrology: JASN, 2011, 22, 1099-1111.	6.1	43
105	Mitochondrial DNA and TFAM gene variation in early-onset myocardial infarction: Evidence for an association to haplogroup H. Mitochondrion, 2011, 11, 176-181.	3.4	29
106	Globotriaosylsphingosine actions on human glomerular podocytes: implications for Fabry nephropathy. Nephrology Dialysis Transplantation, 2011, 26, 1797-1802.	0.7	169
107	The Inflammatory Cytokines TWEAK and TNFα Reduce Renal Klotho Expression through NFκB. Journal of the American Society of Nephrology: JASN, 2011, 22, 1315-1325.	6.1	340
108	PPAR- \hat{I}^3 agonist rosiglitazone protects peritoneal membrane from dialysis fluid-induced damage. Laboratory Investigation, 2010, 90, 1517-1532.	3.7	62

#	Article	IF	CITATIONS
109	Statins Inhibit Angiotensin II/Smad Pathway and Related Vascular Fibrosis, by a TGF- \hat{l}^2 -Independent Process. PLoS ONE, 2010, 5, e14145.	2.5	58
110	NF-κB in Renal Inflammation. Journal of the American Society of Nephrology: JASN, 2010, 21, 1254-1262.	6.1	483
111	Parathyroid Hormone–Related Protein Promotes Epithelial–Mesenchymal Transition. Journal of the American Society of Nephrology: JASN, 2010, 21, 237-248.	6.1	40
112	BASP1 Promotes Apoptosis in Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2010, 21, 610-621.	6.1	81
113	TNF Superfamily: A Growing Saga of Kidney Injury Modulators. Mediators of Inflammation, 2010, 2010, 1-11.	3.0	74
114	BMP-7 blocks mesenchymal conversion of mesothelial cells and prevents peritoneal damage induced by dialysis fluid exposure. Nephrology Dialysis Transplantation, 2010, 25, 1098-1108.	0.7	90
115	Functional polymorphisms in the CYP3A4, CYP3A5, and CYP21A2 genes in the risk for hypertension in pregnancy. Biochemical and Biophysical Research Communications, 2010, 397, 576-579.	2.1	14
116	TWEAK Activates the Non-Canonical NFκB Pathway in Murine Renal Tubular Cells: Modulation of CCL21. PLoS ONE, 2010, 5, e8955.	2.5	87
117	Angiotensin-(1–7) and the G Protein-Coupled Receptor Mas Are Key Players in Renal Inflammation. PLoS ONE, 2009, 4, e5406.	2.5	117
118	A Nanoconjugate Apaf-1 Inhibitor Protects Mesothelial Cells from Cytokine-Induced Injury. PLoS ONE, 2009, 4, e6634.	2.5	34
119	The MIF Receptor CD74 in Diabetic Podocyte Injury. Journal of the American Society of Nephrology: JASN, 2009, 20, 353-362.	6.1	94
120	CTGF Promotes Inflammatory Cell Infiltration of the Renal Interstitium by Activating NF-κB. Journal of the American Society of Nephrology: JASN, 2009, 20, 1513-1526.	6.1	110
121	Atorvastatin Prevents Angiotensin II–Induced Vascular Remodeling and Oxidative Stress. Hypertension, 2009, 54, 142-149.	2.7	104
122	Tweak induces proliferation in renal tubular epithelium: a role in uninephrectomy induced renal hyperplasia. Journal of Cellular and Molecular Medicine, 2009, 13, 3329-3342.	3.6	90
123	Atorvastatin attenuates angiotensin Il-induced inflammatory actions in the liver. American Journal of Physiology - Renal Physiology, 2009, 296, G147-G156.	3.4	79
124	Pharmacological Modulation of Epithelial Mesenchymal Transition Caused by Angiotensin II. Role of ROCK and MAPK Pathways. Pharmaceutical Research, 2008, 25, 2447-2461.	3.5	64
125	Mechanisms of Renal Apoptosis in Health and Disease. Journal of the American Society of Nephrology: JASN, 2008, 19, 1634-1642.	6.1	208
126	Inhibitory effect of interleukin- \hat{l}^2 on angiotensin II-induced connective tissue growth factor and type IV collagen production in cultured mesangial cells. American Journal of Physiology - Renal Physiology, 2008, 294, F149-F160.	2.7	47

#	Article	IF	CITATIONS
127	Angiotensin II activates the Smad pathway during epithelial mesenchymal transdifferentiation. Kidney International, 2008, 74, 585-595.	5.2	110
128	3,4-Dideoxyglucosone-3-ene as a mediator of peritoneal demesothelization. Nephrology Dialysis Transplantation, 2008, 23, 3307-3315.	0.7	20
129	The Cytokine TWEAK Modulates Renal Tubulointerstitial Inflammation. Journal of the American Society of Nephrology: JASN, 2008, 19, 695-703.	6.1	169
130	A Slit in Podocyte Death. Current Medicinal Chemistry, 2008, 15, 1645-1654.	2.4	21
131	Essential Role of TGF- \hat{l}^2 /Smad Pathway on Statin Dependent Vascular Smooth Muscle Cell Regulation. PLoS ONE, 2008, 3, e3959.	2.5	49
132	TGF-Î ² signaling in vascular fibrosis. Cardiovascular Research, 2007, 74, 196-206.	3.8	446
133	HMG-CoA Reductase Inhibitors Decrease Angiotensin II–Induced Vascular Fibrosis. Hypertension, 2007, 50, 377-383.	2.7	97
134	Interactions between aldosterone and connective tissue growth factor in vascular and renal damage in spontaneously hypertensive rats. Journal of Hypertension, 2007, 25, 629-638.	0.5	33
135	Expression of gremlin, a bone morphogenetic protein antagonist, in glomerular crescents of pauci-immune glomerulonephritis. Nephrology Dialysis Transplantation, 2007, 22, 1882-1890.	0.7	48
136	The Regulation of the Inflammatory Response Through Nuclear Factor-κB Pathway by Angiotensin IV Extends the Role of the Renin Angiotensin System in Cardiovascular Diseases. Trends in Cardiovascular Medicine, 2007, 17, 19-25.	4.9	69
137	Anti-inflammatory Actions of Quinapril. Cardiovascular Drugs and Therapy, 2007, 21, 211-220.	2.6	7
138	Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrology Dialysis Transplantation, 2006, 21, 16-20.	0.7	291
139	Renal and vascular hypertension-induced inflammation: role of angiotensin II. Current Opinion in Nephrology and Hypertension, 2006, 15, 159-166.	2.0	132
140	Role of Parathyroid Hormone–Related Protein in Tubulointerstitial Apoptosis and Fibrosis after Folic Acid–Induced Nephrotoxicity. Journal of the American Society of Nephrology: JASN, 2006, 17, 1594-1603.	6.1	62
141	Role of connective tissue growth factor in vascular and renal damage associated with hypertension in rats. Interactions with angiotensin II. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2006, 7, 192-200.	1.7	27
142	Suppressors of Cytokine Signaling Regulate Angiotensin II-Activated Janus Kinase-Signal Transducers and Activators of Transcription Pathway in Renal Cells. Journal of the American Society of Nephrology: JASN, 2005, 16, 1673-1683.	6.1	43
143	Angiotensin II and Reactive Oxygen Species. Antioxidants and Redox Signaling, 2005, 7, 1258-1260.	5.4	13
144	Reactive Oxygen Species-Mediated Signaling Pathways in Angiotensin II-Induced MCP- Expression of Proximal Tubular Cells. Antioxidants and Redox Signaling, 2005, 7, 1261-1268.	5.4	52

#	Article	IF	Citations
145	Angiotensin II Regulates Vascular Endothelial Growth Factor via Hypoxia-Inducible Factor-1î± Induction and Redox Mechanisms in the Kidney. Antioxidants and Redox Signaling, 2005, 7, 1275-1284.	5.4	50
146	Endothelin-1, via ETAReceptor and Independently of Transforming Growth Factor- \hat{l}^2 , Increases the Connective Tissue Growth Factor in Vascular Smooth Muscle Cells. Circulation Research, 2005, 97, 125-134.	4.5	108
147	Angiotensin II Activates the Smad Pathway in Vascular Smooth Muscle Cells by a Transforming Growth Factor-β–Independent Mechanism. Circulation, 2005, 111, 2509-2517.	1.6	303
148	Angiotensin II, via AT1 and AT2 Receptors and NF-κB Pathway, Regulates the Inflammatory Response in Unilateral Ureteral Obstruction. Journal of the American Society of Nephrology: JASN, 2004, 15, 1514-1529.	6.1	218
149	Statins to prevent cardiovascular events in hypertensive patients. The ASCOT-LLA study. Nephrology Dialysis Transplantation, 2004, 19, 528-531.	0.7	19
150	NF-ÂB activation and overexpression of regulated genes in human diabetic nephropathy. Nephrology Dialysis Transplantation, 2004, 19, 2505-2512.	0.7	352
151	Molecular mechanisms of angiotensin II-induced vascular injury. Current Hypertension Reports, 2003, 5, 73-79.	3.5	144
152	Angiotensin II Increases Connective Tissue Growth Factor in the Kidney. American Journal of Pathology, 2003, 163, 1937-1947.	3.8	96
153	Inflammation and angiotensin II. International Journal of Biochemistry and Cell Biology, 2003, 35, 881-900.	2.8	603
154	Connective Tissue Growth Factor Is a Mediator of Angiotensin II–Induced Fibrosis. Circulation, 2003, 108, 1499-1505.	1.6	248
155	Angiotensin II, the immune system and renal diseases: another road for RAS?. Nephrology Dialysis Transplantation, 2003, 18, 1423-1426.	0.7	39
156	Modulation of Angiotensin II Effects, A Potential Novel Approach to Inflammatory and Immune Diseases. Current Medicinal Chemistry Anti-inflammatory & Anti-allergy Agents, 2003, 2, 379-394.	0.4	9
157	Angiotensin II Increases Parathyroid Hormone-Related Protein (PTHrP) and the Type 1 PTH/PTHrP Receptor in the Kidney. Journal of the American Society of Nephrology: JASN, 2002, 13, 1595-1607.	6.1	53
158	Systemic Infusion of Angiotensin II into Normal Rats Activates Nuclear Factor-Î ^o B and AP-1 in the Kidney. American Journal of Pathology, 2001, 158, 1743-1756.	3.8	170
159	Angiotensin II and Renal Fibrosis. Hypertension, 2001, 38, 635-638.	2.7	444
160	Proinflammatory actions of angiotensins. Current Opinion in Nephrology and Hypertension, 2001, 10, 321-329.	2.0	361
161	Angiotensin III increases MCP-1 and activates NF-аB and AP-1 in cultured mesangial and mononuclear cells. Kidney International, 2000, 57, 2285-2298.	5.2	111
162	Angiotensin II modulates cell growth-related events and synthesis of matrix proteins in renal interstitial fibroblasts. Kidney International, 1997, 52, 1497-1510.	5.2	180

#	Article	IF	CITATIONS
163	ACE inhibition reduces proteinuria, glomerular lesions and extracellular matrix production in a normotensive rat model of immune complex nephritis. Kidney International, 1995, 48, 1778-1791.	5.2	113