
Yongguang Tu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3066855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defect suppression and energy level alignment in formamidinium-based perovskite solar cells. Journal of Energy Chemistry, 2022, 67, 65-72.	12.9	19
2	Efficient and Stable Allâ€Inorganic CsPbIBr ₂ Perovskite Solar Cells Enabled by Dynamic Vacuumâ€Assisted Lowâ€Temperature Engineering. Solar Rrl, 2022, 6, .	5.8	35
3	Charged Exciton Formation in Compact Polycrystalline Perovskite Thin Films. ACS Photonics, 2022, 9, 1614-1620.	6.6	0
4	Perovskite hetero-bilayer for efficient charge-transport-layer-free solar cells. Joule, 2022, 6, 1277-1289.	24.0	25
5	Minimizing voltage deficit in Methylammonium-Free perovskite solar cells via surface reconstruction. Chemical Engineering Journal, 2022, 444, 136622.	12.7	22
6	Lansoprazole, a cure-four, enables perovskite solar cells efficiency exceeding 24%. Chemical Engineering Journal, 2022, 446, 137416.	12.7	14
7	Buried Interfaces in Halide Perovskite Photovoltaics. Advanced Materials, 2021, 33, e2006435.	21.0	214
8	Perovskite Solar Cells for Space Applications: Progress and Challenges. Advanced Materials, 2021, 33, e2006545.	21.0	184
9	Multiple-Defect Management for Efficient Perovskite Photovoltaics. ACS Energy Letters, 2021, 6, 2404-2412.	17.4	74
10	Optimizing Vertical Crystallization for Efficient Perovskite Solar Cells by Buried Composite Layers. Solar Rrl, 2021, 5, 2100457.	5.8	14
11	Surface modification induced by perovskite quantum dots for triple-cation perovskite solar cells. Nano Energy, 2020, 67, 104189.	16.0	81
12	Superior Carrier Lifetimes Exceeding 6 µs in Polycrystalline Halide Perovskites. Advanced Materials, 2020, 32, e2002585.	21.0	151
13	Green Solution-Bathing Process for Efficient Large-Area Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 24905-24912.	8.0	20
14	Zn ⁺ –O [–] Dual-Spin Surface State Formation by Modification of ZnO Nanoparticles with Diboron Compounds. Langmuir, 2019, 35, 14173-14179.	3.5	5
15	Diindolotriazatruxene-Based Hole-Transporting Materials for High-Efficiency Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 45717-45725.	8.0	22
16	Modification of TiO2 Nanoparticles with Organodiboron Molecules Inducing Stable Surface Ti3+ Complex. IScience, 2019, 20, 195-204.	4.1	24
17	Mixed-cation perovskite solar cells in space. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	116
18	Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells. Nano Energy, 2018, 49, 411-418.	16.0	184

Yongguang Tu

#	Article	lF	CITATIONS
19	Improved performance of a CoTe//AC asymmetric supercapacitor using a redox additive aqueous electrolyte. RSC Advances, 2018, 8, 7997-8006.	3.6	63
20	Diboronâ€Assisted Interfacial Defect Control Strategy for Highly Efficient Planar Perovskite Solar Cells. Advanced Materials, 2018, 30, e1805085.	21.0	128
21	Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 2018, 360, 1442-1446.	12.6	1,221
22	Solvent engineering for forming stonehenge-like PbI ₂ nano-structures towards efficient perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 4376-4383.	10.3	59
23	Controlled growth of CH3NH3PbI3 films towards efficient perovskite solar cells by varied-stoichiometric intermediate adduct. Applied Surface Science, 2017, 403, 572-577.	6.1	25
24	Fabrication a thin nickel oxide layer on photoanodes for control of charge recombination in dye-sensitized solar cells. Journal of Solid State Electrochemistry, 2017, 21, 1523-1531.	2.5	7
25	A dual function of high efficiency quasi-solid-state flexible dye-sensitized solar cell based on conductive polymer integrated into poly (acrylic acid-co-carbon nanotubes) gel electrolyte. Solar Energy, 2017, 148, 63-69.	6.1	35
26	Modulated CH3NH3PbI3â^'xBrx film for efficient perovskite solar cells exceeding 18%. Scientific Reports, 2017, 7, 44603.	3.3	60
27	Solvent engineering for high-quality perovskite solar cell with an efficiency approaching 20%. Journal of Power Sources, 2017, 365, 1-6.	7.8	63
28	Mesoporous Zn2SnO4 as effective electron transport materials for high-performance perovskite solar cells. Electrochimica Acta, 2017, 251, 307-315.	5.2	39
29	Reducing hysteresis and enhancing performance of perovskite solar cells using acetylacetonate modified TiO 2 nanoparticles as electron transport layers. Journal of Power Sources, 2017, 365, 83-91.	7.8	22
30	Hybrid perovskite by mixing formamidinium and methylammonium lead iodides for high-performance planar solar cells with efficiency of 19.41%. Solar Energy, 2017, 157, 853-859.	6.1	31
31	A gradient engineered hole-transporting material for monolithic series-type large-area perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 21161-21168.	10.3	35
32	Addition of Lithium Iodide into Precursor Solution for Enhancing the Photovoltaic Performance of Perovskite Solar Cells. Energy Technology, 2017, 5, 1814-1819.	3.8	4
33	Controllable agglomeration of titanium dioxide particles by one-step solvothermal reaction toward efficient dye-sensitized solar cell. Journal of Alloys and Compounds, 2017, 694, 1083-1088.	5.5	7
34	TiO2 single crystalline nanorod compact layer for high-performance CH3NH3PbI3 perovskite solar cells with an efficiency exceeding 17%. Journal of Power Sources, 2016, 332, 366-371.	7.8	21
35	Tin oxide nanosheets as efficient electron transporting materials for perovskite solar cells. Solar Energy, 2016, 137, 579-584.	6.1	19
36	High-Performance Molybdenum Diselenide Electrodes Used in Dye-Sensitized Solar Cells and Supercapacitors. IEEE Journal of Photovoltaics, 2016, 6, 1196-1202.	2.5	24

Yongguang Tu

#	Article	IF	CITATIONS
37	Facile hydrothermal synthesis of NiTe and its application as positive electrode material for asymmetric supercapacitor. Journal of Alloys and Compounds, 2016, 685, 384-390.	5.5	80
38	Flower-like nickel cobalt sulfide microspheres modified with nickel sulfide as Pt-free counter electrode for dye-sensitized solar cells. Journal of Power Sources, 2016, 304, 266-272.	7.8	105
39	High-performance and transparent counter electrodes based on polypyrrole and ferrous sulfide nanoparticles for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2016, 27, 5680-5685.	2.2	8
40	A transparent cobalt sulfide/reduced graphene oxide nanostructure counter electrode for high efficient dye-sensitized solar cells. Electrochimica Acta, 2016, 187, 210-217.	5.2	36
41	An in situ polymerized PEDOT/Fe ₃ O ₄ composite as a Pt-free counter electrode for highly efficient dye sensitized solar cells. RSC Advances, 2016, 6, 1637-1643.	3.6	28
42	Flowerlike molybdenum sulfide/multi-walled carbon nanotube hybrid as Pt-free counter electrode used in dye-sensitized solar cells. Electrochimica Acta, 2015, 173, 252-259.	5.2	63
43	Petal-like cobalt selenide nanosheets used as counter electrode in high efficient dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2015, 26, 2501-2507.	2.2	16
44	Pt–Co and Pt–Ni hollow nanospheres supported with PEDOT:PSS used as high performance counter electrodes in dye-sensitized solar cells. Solar Energy, 2015, 122, 727-736.	6.1	27
45	TiO ₂ quantum dots as superb compact block layers for high-performance CH ₃ NH ₃ Pbl ₃ perovskite solar cells with an efficiency of 16.97%. Nanoscale, 2015, 7, 20539-20546.	5.6	87
46	A high performance cobalt sulfide counter electrode for dye-sensitized solar cells. Electrochimica Acta, 2015, 159, 166-173.	5.2	90
47	Improving the photovoltaic performance of dye-sensitized solar cell by graphene/titania photoanode. Electrochimica Acta, 2015, 156, 261-266.	5.2	46
48	CdS/CdSe co-sensitized SnO2 photoelectrodes for quantum dots sensitized solar cells. Optics Communications, 2015, 346, 64-68.	2.1	22
49	Improved performance of quantum dots sensitized solar cells using ZnO hierarchical spheres as photoanodes. Ceramics International, 2015, 41, 14501-14507.	4.8	16
50	High performance sponge-like cobalt sulfide/reduced graphene oxide hybrid counter electrode for dye-sensitized solar cells. Journal of Power Sources, 2015, 293, 570-576.	7.8	74
51	Transparent nickel selenide used as counter electrode in high efficient dye-sensitized solar cells. Journal of Alloys and Compounds, 2015, 640, 29-33.	5.5	45
52	Cobalt selenide nanorods used as a high efficient counter electrode for dye-sensitized solar cells. Electrochimica Acta, 2015, 168, 69-75.	5.2	57
53	Hydrothermal synthesis of CoMoO ₄ /Co ₉ S ₈ hybrid nanotubes based on counter electrodes for highly efficient dye-sensitized solar cells. RSC Advances, 2015, 5, 83029-83035.	3.6	19
54	Effect of ammonia on electrodeposition of cobalt sulfide and nickel sulfide counter electrodes for dye-sensitized solar cells. Electrochimica Acta, 2015, 180, 574-580.	5.2	22

#	Article	IF	CITATIONS
55	Bifacial illuminated PbS quantum dot-sensitized solar cells with translucent CuS counter electrodes. Journal of Materials Science: Materials in Electronics, 2014, 25, 3016-3022.	2.2	6