
Silvia Bolognin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3065358/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Parkinson's Disease Phenotypes in Patient Neuronal Cultures and Brain Organoids Improved by <scp>2â€Hydroxypropylâ€i²â€Cyclodextrin</scp> Treatment. Movement Disorders, 2022, 37, 80-94.	3.9	37
2	Structural Plasticity of Dopaminergic Neurons Requires the Activation of the D3R-nAChR Heteromer and the PI3K-ERK1/2/Akt-Induced Expression of c-Fos and p70S6K Signaling Pathway. Molecular Neurobiology, 2022, 59, 2129-2149.	4.0	5
3	A Triple Combination of Targeting Ligands Increases the Penetration of Nanoparticles across a Blood-Brain Barrier Culture Model. Pharmaceutics, 2022, 14, 86.	4.5	8
4	Epitope imprinting of alpha-synuclein for sensing in Parkinson's brain organoid culture medium. Biosensors and Bioelectronics, 2021, 175, 112852.	10.1	26
5	Impaired dopamine D3 and nicotinic acetylcholine receptor membrane localization in iPSCs-derived dopaminergic neurons from two Parkinson's disease patients carrying the LRRK2 G2019S mutation. Neurobiology of Aging, 2021, 99, 65-78.	3.1	14
6	Integrated, automated maintenance, expansion and differentiation of 2D and 3D patient-derived cellular models for high throughput drug screening. Scientific Reports, 2021, 11, 1439.	3.3	20
7	Monitoring the neurotransmitter release of human midbrain organoids using a redox cycling microsensor as a novel tool for personalized Parkinson's disease modelling and drug screening. Analyst, The, 2021, 146, 2358-2367.	3.5	22
8	Transition metal dichalcogenides to optimize the performance of peptide-imprinted conductive polymers as electrochemical sensors. Mikrochimica Acta, 2021, 188, 203.	5.0	11
9	The Parkinson's-disease-associated mutation LRRK2-G2019S alters dopaminergic differentiation dynamics via NR2F1. Cell Reports, 2021, 37, 109864.	6.4	20
10	Reduced astrocytic reactivity in human brains and midbrain organoids with PRKN mutations. Npj Parkinson's Disease, 2020, 6, 33.	5.3	30
11	Peptide-Imprinted Poly(hydroxymethyl 3,4-ethylenedioxythiophene) Nanotubes for Detection of α Synuclein in Human Brain Organoids. ACS Applied Nano Materials, 2020, 3, 8027-8036.	5.0	26
12	Single-cell transcriptomics reveals multiple neuronal cell types in human midbrain-specific organoids. Cell and Tissue Research, 2020, 382, 463-476.	2.9	30
13	A patient-based model of RNA mis-splicing uncovers treatment targets in Parkinson's disease. Science Translational Medicine, 2020, 12, .	12.4	24
14	Machine learning-assisted neurotoxicity prediction in human midbrain organoids. Parkinsonism and Related Disorders, 2020, 75, 105-109.	2.2	41
15	Impaired serine metabolism complements LRRK2-G2019S pathogenicity in PD patients. Parkinsonism and Related Disorders, 2019, 67, 48-55.	2.2	13
16	Modeling Parkinson's disease in midbrain-like organoids. Npj Parkinson's Disease, 2019, 5, 5.	5.3	204
17	Neural Stem Cells of Parkinson's Disease Patients Exhibit Aberrant Mitochondrial Morphology and Functionality. Stem Cell Reports, 2019, 12, 878-889.	4.8	68
18	Synapse alterations precede neuronal damage and storage pathology in a human cerebral organoid model of CLN3-juvenile neuronal ceroid lipofuscinosis. Acta Neuropathologica Communications, 2019,	5.2	49

7, 222.

SILVIA BOLOGNIN

#	Article	IF	CITATIONS
19	3D Cultures of Parkinson's Diseaseâ€Specific Dopaminergic Neurons for High Content Phenotyping and Drug Testing. Advanced Science, 2019, 6, 1800927.	11.2	92
20	Altered Expression of Circulating Cdc42 in Frontotemporal Lobar Degeneration. Journal of Alzheimer's Disease, 2018, 61, 1477-1483.	2.6	15
21	Millifluidic culture improves human midbrain organoid vitality and differentiation. Lab on A Chip, 2018, 18, 3172-3183.	6.0	108
22	Rac1 activation links tau hyperphosphorylation and Aβ dysmetabolism in Alzheimer's disease. Acta Neuropathologica Communications, 2018, 6, 61.	5.2	49
23	Derivation of Human Midbrain-Specific Organoids from Neuroepithelial StemÂCells. Stem Cell Reports, 2017, 8, 1144-1154.	4.8	321
24	Rapid and robust generation of long-term self-renewing human neural stem cells with the ability to generate mature astroglia. Scientific Reports, 2015, 5, 16321.	3.3	44
25	Elevated Tau Level in Aged Rat Cerebrospinal Fluid Reduced by Treatment with a Neurotrophic Compound. Journal of Alzheimer's Disease, 2015, 47, 557-564.	2.6	15
26	Detection of CFTR protein in human leukocytes by flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 611-620.	1.5	28
27	The Potential Role of Rho GTPases in Alzheimer's Disease Pathogenesis. Molecular Neurobiology, 2014, 50, 406-422.	4.0	36
28	Rescue of cognitive-aging by administration of a neurogenic and/or neurotrophic compound. Neurobiology of Aging, 2014, 35, 2134-2146.	3.1	45
29	Metallothioneins and the Central Nervous System: From a Deregulation in Neurodegenerative Diseases to the Development of New Therapeutic Approaches. Journal of Alzheimer's Disease, 2014, 41, 29-42.	2.6	20
30	O2-06-04: A NOVEL PHARMACOLOGIC THERAPEUTIC APPROACH TO ALZHEIMER DISEASE AND COGNITIVE AGING. , 2014, 10, P175-P175.		1
31	Shifting balance from neurodegeneration to regeneration of the brain: a novel therapeutic approach to Alzheimer′s disease and related neurodegenerative conditions. Neural Regeneration Research, 2014, 9, 1518.	3.0	17
32	β-Amyloid-aluminum complex alters cytoskeletal stability and increases ROS production in cortical neurons. Neurochemistry International, 2013, 62, 566-574.	3.8	20
33	Animal Models of the Sporadic Form of Alzheimer's Disease: Focus on the Disease and Not Just the Lesions1. Journal of Alzheimer's Disease, 2013, 37, 469-474.	2.6	27
34	Increased Glutaminyl Cyclase Expression in Peripheral Blood of Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2013, 34, 263-271.	2.6	23
35	STRUCTURAL EFFECTS OF THE AU(I) DRUG AURANOFIN ON CELL MEMBRANES AND MOLECULAR MODELS. Journal of the Chilean Chemical Society, 2013, 58, 2001-2004.	1.2	1
36	Rac1 Selective Activation Improves Retina Ganglion Cell Survival and Regeneration. PLoS ONE, 2013, 8, e64350.	2.5	26

SILVIA BOLOGNIN

#	Article	IF	CITATIONS
37	Microarray analysis of gene expression profiles in human neuroblastoma cells exposed to Aβ–Zn and Aβ–Cu complexes. Future Neurology, 2012, 7, 483-497.	0.5	0
38	Effects of a Copper-Deficient Diet on the Biochemistry, Neural Morphology and Behavior of Aged Mice. PLoS ONE, 2012, 7, e47063.	2.5	9
39	An experimental rat model of sporadic Alzheimer's disease and rescue of cognitive impairment with a neurotrophic peptide. Acta Neuropathologica, 2012, 123, 133-151.	7.7	72
40	Aluminum, copper, iron and zinc differentially alter amyloid-Aβ1–42 aggregation and toxicity. International Journal of Biochemistry and Cell Biology, 2011, 43, 877-885.	2.8	147
41	Effects of phenylpropanolamine (PPA) on in vitro human erythrocyte membranes and molecular models. Biochemical and Biophysical Research Communications, 2011, 406, 320-325.	2.1	8
42	Rescue of Synaptic Failure and Alleviation of Learning and Memory Impairments in a Trisomic Mouse Model of Down Syndrome. Journal of Neuropathology and Experimental Neurology, 2011, 70, 1070-1079.	1.7	28
43	Beta-amyloid toxicity increases with hydrophobicity in the presence of metal ions. Monatshefte Für Chemie, 2011, 142, 421-430.	1.8	10
44	Ontogenesis and migration of metallothionein I/II-containing glial cells in the human telencephalon during the second trimester. Brain Research, 2010, 1327, 16-23.	2.2	7
45	STRUCTURAL EFFECTS OF VERAPAMIL ON CELL MEMBRANES AND MOLECULAR MODELS. Journal of the Chilean Chemical Society, 2010, 55, .	1.2	7
46	Human erythrocytes and neuroblastoma cells are affected in vitro by Au(III) ions. Biochemical and Biophysical Research Communications, 2010, 397, 226-231.	2.1	9
47	Interaction between Alzheimer's Amyloid-β and Amyloid-β-Metal Complexes with Cell Membranes. Journal of Alzheimer's Disease, 2009, 17, 81-90.	2.6	18
48	Chelation therapy for neurodegenerative diseases. Medicinal Research Reviews, 2009, 29, 547-570.	10.5	82
49	Metal Ion Physiopathology in Neurodegenerative Disorders. NeuroMolecular Medicine, 2009, 11, 223-238.	3.4	131
50	Structural effects of tetrachloroauric acid on cell membranes and molecular models. Coordination Chemistry Reviews, 2009, 253, 1599-1606.	18.8	7
51	Alzheimer's disease, metal ions and metal homeostatic therapy. Trends in Pharmacological Sciences, 2009, 30, 346-355.	8.7	304
52	Human cells and cell membrane molecular models are affected in vitro by chlorpromazine. Biophysical Chemistry, 2008, 135, 7-13.	2.8	22
53	Mutual Stimulation of Beta-Amyloid Fibrillogenesis by Clioquinol and Divalent Metals. NeuroMolecular Medicine, 2008, 10, 322-332.	3.4	14
54	Accumulation of copper and other metal ions, and metallothionein I/II expression in the bovine brain as a function of aging. Journal of Chemical Neuroanatomy, 2008, 36, 1-5.	2.1	59

SILVIA BOLOGNIN

#	Article	IF	CITATIONS
55	Potential pathogenic role of β-amyloid1–42–aluminum complex in Alzheimer's disease. International Journal of Biochemistry and Cell Biology, 2008, 40, 731-746.	2.8	79
56	Role of Metal Ions in the Aβ Oligomerization in Alzheimers Disease and in Other Neurological Disorders. Current Alzheimer Research, 2008, 5, 500-507.	1.4	106
57	Destabilization of non-pathological variants of ataxin-3 by metal ions results in aggregation/fibrillogenesis. International Journal of Biochemistry and Cell Biology, 2007, 39, 966-977.	2.8	20