List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3064357/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thickness-dependent monochalcogenide GeSe-based CBRAM for memory and artificial electronic synapses. Nano Research, 2022, 15, 2263-2277.	10.4	19
2	Engineering the active sites tuned MoS2 nanoarray structures by transition metal doping for hydrogen evolution and supercapacitor applications. Journal of Alloys and Compounds, 2022, 893, 162271.	5.5	57
3	Ultrasonically derived WSe2 nanostructure embedded MXene hybrid composites for supercapacitors and hydrogen evolution reactions. Renewable Energy, 2022, 185, 585-597.	8.9	38
4	A Facile Design of Solution-Phase Based VS2 Multifunctional Electrode for Green Energy Harvesting and Storage. Nanomaterials, 2022, 12, 339.	4.1	21
5	Decoration of X2C nanoparticles on CdS nanostructures for highly efficient photocatalytic wastewater treatment under visible light. Applied Surface Science, 2022, 583, 152533.	6.1	4
6	Impact of Molybdenum Dichalcogenides on the Active and Holeâ€Transport Layers for Perovskite Solar Cells, Xâ€Ray Detectors, and Photodetectors. Small, 2022, 18, e2104216.	10.0	22
7	Unveiling the Redox Electrochemistry of MOFâ€Derived fccâ€NiCo@GC Polyhedron as an Advanced Electrode Material for Boosting Specific Energy of the Supercapattery. Small, 2022, 18, e2107284.	10.0	43
8	Rectifying Effect in a High-Performance Ballistic Diode Bridge Based on Encapsulated Graphene with a Unique Design. ACS Applied Electronic Materials, 2022, 4, 1518-1524.	4.3	2
9	Fullerene-free, MoTe2 atomic layer blended bulk heterojunctions for improved organic solar cell and photodetector performance. Journal of Materials Research and Technology, 2022, 17, 2875-2887.	5.8	5
10	Schottky barrier height modulation and photoconductivity in a vertical graphene/ReSe2 vdW p-n heterojunction barristor. Journal of Materials Research and Technology, 2022, 17, 2796-2806.	5.8	7
11	Fabrication of InGaZnO-SnO2/PCBM hybrid electron transfer layer for high-performance Perovskite solar cell and X-ray detector. Journal of Alloys and Compounds, 2022, 906, 164399.	5.5	15
12	Development of <scp>MXene</scp> / <scp> WO ₃ </scp> embedded <scp>PEDOT</scp> : <scp>PSS</scp> hole transport layers for highly efficient perovskite solar cells and Xâ€ray detectors. International Journal of Energy Research, 2022, 46, 12485-12497.	4.5	13
13	Nearâ€Direct Band Alignment of MoTe ₂ /ReSe ₂ Typeâ€II pâ€n Heterojunction for Efficient VNIR Photodetection. Advanced Materials Technologies, 2022, 7, .	5.8	9
14	Bimetallic Cu/Fe MOF-Based Nanosheet Film via Binder-Free Drop-Casting Route: A Highly Efficient Urea-Electrolysis Catalyst. Nanomaterials, 2022, 12, 1916.	4.1	33
15	MoO3@MoS2 Core-Shell Structured Hybrid Anode Materials for Lithium-Ion Batteries. Nanomaterials, 2022, 12, 2008.	4.1	10
16	Selfâ€standing <scp>2D</scp> tinâ€sulfideâ€based heterostructured nanosheets: An efficient overall urea oxidation catalyst. International Journal of Energy Research, 2022, 46, 15143-15155.	4.5	10
17	Shedding light on the structural, optoelectronic, and thermoelectric properties of pyrochlore oxides (La2Q2O7 (Q = Ge, Sn)) for energy applications: A first-principles investigation. Journal of Solid State Chemistry, 2022, 313, 123305.	2.9	14
18	Fabrication of High-Performance Solar Cells and X-ray Detectors Using MoX ₂ @CNT Nanocomposite-Tuned Perovskite Layers. ACS Applied Materials & Interfaces, 2022, 14, 33626-33640.	8.0	7

#	Article	IF	CITATIONS
19	Versatile GeS-based CBRAM with compliance-current-controlled threshold and bipolar resistive switching for electronic synapses. Applied Materials Today, 2022, 29, 101554.	4.3	10
20	MoS2@X2C (XÂ=ÂMo or W) hybrids for enhanced supercapacitor and hydrogen evolution performances. Chemical Engineering Journal, 2021, 421, 127843.	12.7	49
21	Mixedâ€phase <scp> MoS ₂ </scp> decorated reduced graphene oxide hybrid composites for efficient symmetric supercapacitors. International Journal of Energy Research, 2021, 45, 9193-9209.	4.5	28
22	Engineering MoSe ₂ /WS ₂ Hybrids to Replace the Scarce Platinum Electrode for Hydrogen Evolution Reactions and Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 5061-5072.	8.0	69
23	NIR self-powered photodetection and gate tunable rectification behavior in 2D GeSe/MoSe2 heterojunction diode. Scientific Reports, 2021, 11, 3688.	3.3	34
24	Highly Fast Response of Pd/Ta2O5/SiC and Pd/Ta2O5/Si Schottky Diode-Based Hydrogen Sensors. Sensors, 2021, 21, 1042.	3.8	3
25	Influence of morphological tuned nanostructure hybrid layers on efficient bulk heterojunction organic solar cell and X-ray detector performances. Applied Surface Science, 2021, 543, 148863.	6.1	17
26	Experimental and theoretical insights to demonstrate the hydrogen evolution activity of layered platinum dichalcogenides electrocatalysts. Journal of Materials Research and Technology, 2021, 12, 385-398.	5.8	11
27	Designing the MXene/molybdenum diselenide hybrid nanostructures for highâ€performance symmetric supercapacitor and hydrogen evolution applications. International Journal of Energy Research, 2021, 45, 18770-18785.	4.5	23
28	Process Steps for High Quality Si-Based Epitaxial Growth at Low Temperature via RPCVD. Materials, 2021, 14, 3733.	2.9	2
29	Theoretical evaluation and experimental investigation of layered 2H/1T-phase MoS2 and its reduced graphene-oxide hybrids for hydrogen evolution reactions. Journal of Alloys and Compounds, 2021, 868, 159272.	5.5	22
30	Density functional theory study on the modification of silicon nitride surface by fluorine-containing molecules. Applied Surface Science, 2021, 554, 149481.	6.1	5
31	Eutectoid WxC embedded WS2 nanosheets as a hybrid composite anode for lithium-ion batteries. Ceramics International, 2021, 47, 18646-18655.	4.8	12
32	Highly Active Mo2C@WS2 Hybrid Electrode for Enhanced Hydrogen Evolution Reaction. Catalysts, 2021, 11, 1060.	3.5	2
33	Hierarchical Mo2C@CNT Hybrid Structure Formation for the Improved Lithium-Ion Battery Storage Performance. Nanomaterials, 2021, 11, 2195.	4.1	6
34	MoS2@Mo2C hybrid nanostructures formation as an efficient anode material for lithium-ion batteries. Journal of Materials Research and Technology, 2021, 14, 2382-2393.	5.8	20
35	Engineering MoTe2 and Janus SeMoTe nanosheet structures: First-principles roadmap and practical uses in hydrogen evolution reactions and symmetric supercapacitors. Nano Energy, 2021, 87, 106161.	16.0	50
36	Catalytic decontamination of organic/inorganic pollutants in water and green H2 generation using nanoporous SnS2 micro-flower structured film. Journal of Hazardous Materials, 2021, 417, 126105.	12.4	48

#	Article	IF	CITATIONS
37	Characteristics of Mo2C-CNTs hybrid blended hole transport layer in the perovskite solar cells and X-ray detectors. Journal of Alloys and Compounds, 2021, 885, 161039.	5.5	19
38	Self-standing SnS nanosheet array: a bifunctional binder-free thin film catalyst for electrochemical hydrogen generation and wastewater treatment. Dalton Transactions, 2021, 50, 12723-12729.	3.3	27
39	Deep-Ultraviolet (DUV)-Induced Doping in Single Channel Graphene for Pn-Junction. Nanomaterials, 2021, 11, 3003.	4.1	1
40	Optimum design for the ballistic diode based on graphene field-effect transistors. Npj 2D Materials and Applications, 2021, 5, .	7.9	10
41	Enhanced electrocatalytic properties in MoS2/MoTe2 hybrid heterostructures for dye-sensitized solar cells. Applied Surface Science, 2020, 504, 144401.	6.1	32
42	Engineering the novel MoSe2-Mo2C hybrid nanoarray electrodes for energy storage and water splitting applications. Applied Catalysis B: Environmental, 2020, 264, 118531.	20.2	136
43	1D-CoSe ₂ nanoarray: a designed structure for efficient hydrogen evolution and symmetric supercapacitor characteristics. Dalton Transactions, 2020, 49, 14191-14200.	3.3	42
44	Facile preparation of tungsten carbide nanoparticles for an efficient oxalic acid sensor via imprinting. Microchemical Journal, 2020, 159, 105404.	4.5	17
45	Thicknessâ€Dependent, Gateâ€Tunable Rectification and Highly Sensitive Photovoltaic Behavior of Heterostructured GeSe/WS ₂ p–n Diode. Advanced Materials Interfaces, 2020, 7, 2000893.	3.7	25
46	Hybrid Design Using Carbon Nanotubes Decorated with Mo ₂ C and W ₂ C Nanoparticles for Supercapacitors and Hydrogen Evolution Reactions. ACS Sustainable Chemistry and Engineering, 2020, 8, 12248-12259.	6.7	73
47	One-Pot Synthesis of W2C/WS2 Hybrid Nanostructures for Improved Hydrogen Evolution Reactions and Supercapacitors. Nanomaterials, 2020, 10, 1597.	4.1	39
48	Facile synthesis of cobalt–nickel sulfide thin film as a promising counter electrode for triiodide reduction in dye-sensitized solar cells. Energy, 2020, 202, 117730.	8.8	31
49	Asymmetric electrode incorporated 2D GeSe for self-biased and efficient photodetection. Scientific Reports, 2020, 10, 9374.	3.3	38
50	Optoelectronics of Multijunction Heterostructures of Transition Metal Dichalcogenides. Nano Letters, 2020, 20, 1934-1943.	9.1	27
51	Visibility of hexagonal boron nitride on transparent substrates. Nanotechnology, 2020, 31, 195701.	2.6	4
52	Dependence of InGaZnO and SnO2 thin film stacking sequence for the resistive switching characteristics of conductive bridge memory devices. Applied Surface Science, 2020, 525, 146390.	6.1	31
53	Design of WSe ₂ /MoS ₂ Heterostructures as the Counter Electrode to Replace Pt for Dye-Sensitized Solar Cell. ACS Sustainable Chemistry and Engineering, 2019, 7, 13195-13205.	6.7	57
54	Fabrication of Robust Hydrogen Evolution Reaction Electrocatalyst Using Ag2Se by Vacuum Evaporation. Nanomaterials, 2019, 9, 1460.	4.1	12

#	Article	IF	CITATIONS
55	Synthesis of Mo2C and W2C Nanoparticle Electrocatalysts for the Efficient Hydrogen Evolution Reaction in Alkali and Acid Electrolytes. Frontiers in Chemistry, 2019, 7, 716.	3.6	37
56	Fabrication of MoSe2 decorated three-dimensional graphene composites structure as a highly stable electrocatalyst for improved hydrogen evolution reaction. Renewable Energy, 2019, 143, 1659-1669.	8.9	32
57	Facile preparation of molybdenum carbide (Mo2C) nanoparticles and its effective utilization in electrochemical sensing of folic acid via imprinting. Biosensors and Bioelectronics, 2019, 140, 111330.	10.1	59
58	Reversible transition of volatile to non-volatile resistive switching and compliance current-dependent multistate switching in IGZO/MnO RRAM devices. Applied Physics Letters, 2019, 114, .	3.3	60
59	Fabrication of MoS2/WSe2 heterostructures as electrocatalyst for enhanced hydrogen evolution reaction. Applied Surface Science, 2019, 480, 611-620.	6.1	82
60	Density functional theory study on the fluorination reactions of silicon and silicon dioxide surfaces using different fluorine-containing molecules. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	2.1	22
61	Facile and cost-effective growth of MoS2 on 3D porous graphene-coated Ni foam for robust and stable hydrogen evolution reaction. Journal of Alloys and Compounds, 2019, 788, 267-276.	5.5	27
62	Siâ€core/SiGeâ€shell channel nanowire FET for subâ€10â€nm logic technology in the THz regime. ETRI Journal, 2019, 41, 829-837.	2.0	1
63	Twist-Angle-Dependent Optoelectronics in a Few-Layer Transition-Metal Dichalcogenide Heterostructure. ACS Applied Materials & Interfaces, 2019, 11, 2470-2478.	8.0	19
64	Facile method to synthesis hybrid phase 1T@2H MoSe2 nanostructures for rechargeable lithium ion batteries. Journal of Electroanalytical Chemistry, 2019, 833, 333-339.	3.8	39
65	One-pot facile methodology to synthesize MoS2-graphene hybrid nanocomposites for supercapacitors with improved electrochemical capacitance. Composites Part B: Engineering, 2019, 161, 555-563.	12.0	85
66	Design of Basal Plane Edges in Metal-Doped Nanostripes-Structured MoSe ₂ Atomic Layers To Enhance Hydrogen Evolution Reaction Activity. ACS Sustainable Chemistry and Engineering, 2019, 7, 458-469.	6.7	58
67	Construction of dye-sensitized solar cells using wet chemical route synthesized MoSe2 counter electrode. Journal of Industrial and Engineering Chemistry, 2019, 69, 379-386.	5.8	18
68	SiGe Heterojunction FinFET Towards Tera-Hertz Applications. Journal of the Korean Physical Society, 2018, 72, 527-532.	0.7	0
69	Influence of an Al2O3 interlayer in a directly grown graphene-silicon Schottky junction solar cell. Carbon, 2018, 132, 157-164.	10.3	78
70	Facile and cost-effective methodology to fabricate MoS 2 counter electrode for efficient dye-sensitized solar cells. Dyes and Pigments, 2018, 151, 7-14.	3.7	47
71	Large area growth of MoTe2 films as high performance counter electrodes for dye-sensitized solar cells. Scientific Reports, 2018, 8, 29.	3.3	68
72	WS2/CoSe2 heterostructure: A designed structure as catalysts for enhanced hydrogen evolution performance. Journal of Industrial and Engineering Chemistry, 2018, 65, 167-174.	5.8	34

#	Article	IF	CITATIONS
73	Temperature-Dependent and Gate-Tunable Rectification in a Black Phosphorus/WS ₂ van der Waals Heterojunction Diode. ACS Applied Materials & Interfaces, 2018, 10, 13150-13157.	8.0	61
74	Ultrathin SiGe Shell Channel p-Type FinFET on Bulk Si for Sub-10-nm Technology Nodes. IEEE Transactions on Electron Devices, 2018, 65, 1290-1297.	3.0	19
75	Selective AuCl3 doping of graphene for reducing contact resistance of graphene devices. Applied Surface Science, 2018, 427, 48-54.	6.1	14
76	Development of a WS ₂ /MoTe ₂ heterostructure as a counter electrode for the improved performance in dye-sensitized solar cells. Inorganic Chemistry Frontiers, 2018, 5, 3178-3183.	6.0	27
77	WS(1â^²x)Sex Nanoparticles Decorated Three-Dimensional Graphene on Nickel Foam: A Robust and Highly Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Nanomaterials, 2018, 8, 929.	4.1	24
78	Dynamics of liquid crystal on hexagonal lattice. 2D Materials, 2018, 5, 045021.	4.4	5
79	Visualizing Degradation of Black Phosphorus Using Liquid Crystals. Scientific Reports, 2018, 8, 12966.	3.3	10
80	Facile Synthesis of Molybdenum Diselenide Layers for High-Performance Hydrogen Evolution Electrocatalysts. ACS Omega, 2018, 3, 5799-5807.	3.5	20
81	CuS/WS2 and CuS/MoS2 heterostructures for high performance counter electrodes in dye-sensitized solar cells. Solar Energy, 2018, 171, 122-129.	6.1	50
82	A vertical WSe ₂ –MoSe ₂ p–n heterostructure with tunable gate rectification. RSC Advances, 2018, 8, 25514-25518.	3.6	23
83	Improved Hydrogen Evolution Reaction Performance using MoS ₂ –WS ₂ Heterostructures by Physicochemical Process. ACS Sustainable Chemistry and Engineering, 2018, 6, 8400-8409.	6.7	111
84	High Performance MoSe ₂ /Mo Counter Electrodes Based- Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2017, 164, E11-E16.	2.9	20
85	Study of surface reaction during selective epitaxy growth of silicon by thermodynamic analysis and density functional theory calculation. Journal of Crystal Growth, 2017, 468, 278-282.	1.5	13
86	Study of Grains and Boundaries of Molybdenum Diselenide and Tungsten Diselenide Using Liquid Crystal. Nano Letters, 2017, 17, 1474-1481.	9.1	24
87	Growth of a WSe 2 /W counter electrode by sputtering and selenization annealing for high-efficiency dye-sensitized solar cells. Applied Surface Science, 2017, 406, 84-90.	6.1	32
88	Capacitance behavior of radio-frequency interdigital capacitor with single- and multi-layer graphenes. Applied Physics Letters, 2017, 110, .	3.3	2
89	Direct synthesis of thickness-tunable MoS2 quantum dot thin layers: Optical, structural and electrical properties and their application to hydrogen evolution. Nano Energy, 2017, 35, 101-114.	16.0	99
90	Synthesis of MoS _{2(1â^'x)} Se _{2x} and WS _{2(1â^'x)} Se _{2x} alloys for enhanced hydrogen evolution reaction performance. Inorganic Chemistry Frontiers, 2017, 4, 2068-2074.	6.0	27

#	Article	IF	CITATIONS
91	Induced Superaerophobicity onto a Non-superaerophobic Catalytic Surface for Enhanced Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 43674-43680.	8.0	37
92	n-MoS ₂ /p-Si Solar Cells with Al ₂ O ₃ Passivation for Enhanced Photogeneration. ACS Applied Materials & Interfaces, 2016, 8, 29383-29390.	8.0	77
93	Layer-modulated, wafer scale and continuous ultra-thin WS ₂ films grown by RF sputtering via post-deposition annealing. Journal of Materials Chemistry C, 2016, 4, 7846-7852.	5.5	26
94	Selective growth of graphene in layer-by-layer via chemical vapor deposition. Nanoscale, 2016, 8, 14633-14642.	5.6	10
95	Large-area, continuous and high electrical performances of bilayer to few layers MoS2 fabricated by RF sputtering via post-deposition annealing method. Scientific Reports, 2016, 6, 30791.	3.3	104
96	A progressive route for tailoring electrical transport in MoS2. Nano Research, 2016, 9, 380-391.	10.4	14
97	Synthesis and characterization of large-area and continuous MoS ₂ atomic layers by RF magnetron sputtering. Nanoscale, 2016, 8, 4340-4347.	5.6	74
98	Highâ€Performance Platinumâ€Free Dyeâ€Sensitized Solar Cells with Molybdenum Disulfide Films as Counter Electrodes. ChemPhysChem, 2015, 16, 3959-3965.	2.1	27
99	Cu/MoS ₂ /ITO based hybrid structure for catalysis of hydrazine oxidation. RSC Advances, 2015, 5, 15374-15378.	3.6	11
100	Effect of Annealing in Ar/H ₂ Environment on Chemical Vapor Deposition-Grown Graphene Transferred With Poly (Methyl Methacrylate). IEEE Nanotechnology Magazine, 2015, 14, 70-74.	2.0	34
101	A highly sensitive enzymeless glucose sensor based on 3D graphene–Cu hybrid electrodes. New Journal of Chemistry, 2015, 39, 7481-7487.	2.8	21
102	Direct Determination of Field Emission across the Heterojunctions in a ZnO/Graphene Thin-Film Barristor. ACS Applied Materials & amp; Interfaces, 2015, 7, 18300-18305.	8.0	13
103	Controlled synthesis and optical properties of polycrystalline molybdenum disulfide atomic layers grown by chemical vapor deposition. Journal of Alloys and Compounds, 2015, 653, 369-378.	5.5	20
104	Sputtering and sulfurization-combined synthesis of a transparent WS ₂ counter electrode and its application to dye-sensitized solar cells. RSC Advances, 2015, 5, 103567-103572.	3.6	32
105	Microstructural properties evaluation of SnSSe alloy films. Journal of Materials Science: Materials in Electronics, 2015, 26, 1641-1648.	2.2	12
106	Comparison studies on electrodeposited CdSe, SnSe and Cd x Sn1â^'x Se thin films. Ionics, 2015, 21, 1187-1192.	2.4	6
107	Physical and electrical properties of graphene grown under different hydrogen flow in low pressure chemical vapor deposition. Nanoscale Research Letters, 2014, 9, 546.	5.7	39
108	Atomic layer deposition of copper nitride film and its application to copper seed layer for electrodeposition. Thin Solid Films, 2014, 556, 434-439.	1.8	25

#	Article	IF	CITATIONS
109	Graphene film growth on sputtered thin Cu–Ni alloy film by inductively coupled plasma chemical vapor deposition. RSC Advances, 2014, 4, 63349-63353.	3.6	6
110	Radio-frequency characteristics of graphene monolayer via nitric acid doping. Carbon, 2014, 78, 532-539.	10.3	9
111	Fabrication of high-performance graphene field-effect transistor with solution-processed Al2O3 sensing membrane. Applied Physics Letters, 2014, 104, .	3.3	19
112	Enhanced performance of graphene by using gold film for transfer and masking process. Current Applied Physics, 2014, 14, 1045-1050.	2.4	13
113	Fast and simultaneous growth of graphene, intermetallic compounds, and silicate on Cu–Ni alloy foils. Materials Chemistry and Physics, 2014, 147, 452-460.	4.0	2
114	Effects of hydrogen in the cooling step of chemical vapor deposition of graphene. Electronic Materials Letters, 2013, 9, 417-420.	2.2	7
115	Low damage-transfer of graphene using epoxy bonding. Electronic Materials Letters, 2013, 9, 517-521.	2.2	9
116	Morphological evolution, structural and optical investigations of ZnO:Mg (MgxZn1â^'xO (0 ≤ ≤30%)) nanostructures. RSC Advances, 2013, 3, 5465.	3.6	14
117	Electrical properties of organic field effect transistors with thin graphite/metal electrode directly grown by ICP-CVD at low temperatures. Current Applied Physics, 2013, 13, 1275-1279.	2.4	1
118	Methane as an effective hydrogen source for single-layer graphene synthesis on Cu foil by plasma enhanced chemical vapor deposition. Nanoscale, 2013, 5, 1221.	5.6	104
119	Atomic layer deposition of cobalt oxide thin films using cyclopentadienylcobalt dicarbonyl and ozone at low temperatures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	2.1	15
120	Raman spectroscopic image analysis on micropatterned graphene. Micro and Nano Letters, 2013, 8, 362-365.	1.3	3
121	Purity Evaluation of Single-Walled Carbon Nanotubes Using Thermogravimetric Analysis. Journal of Korean Institute of Metals and Materials, 2013, 51, 137-144.	1.0	0
122	Plasma Treatment to Improve Chemical Vapor Deposition-Grown Graphene to Metal Electrode Contact. Japanese Journal of Applied Physics, 2012, 51, 04DN04.	1.5	8
123	Atomic Layer Deposition of SiO ₂ Thin Films Using Tetrakis(ethylamino)silane and Ozone. Journal of Nanoscience and Nanotechnology, 2012, 12, 3589-3592.	0.9	10
124	Effects of alloying 30 at. % Ni using a Cu catalyst on the growth of bilayer graphene. Electronic Materials Letters, 2012, 8, 609-616.	2.2	4
125	Nanoscale investigation of charge transport at the grain boundaries and wrinkles in graphene film. Nanotechnology, 2012, 23, 285705.	2.6	34
126	RF transmission properties of graphene monolayers with width variation. Physica Status Solidi - Rapid Research Letters, 2012, 6, 19-21.	2.4	16

#	Article	IF	CITATIONS
127	Characteristics of Schottky-barrier source/drain metal-oxide-polycrystalline thin-film transistors on glass substrates. Journal of the Korean Physical Society, 2012, 60, 6-9.	0.7	3
128	Intrinsic characteristics of transmission line of graphenes at microwave frequencies. Applied Physics Letters, 2012, 100, .	3.3	30
129	Synthesis of graphene ribbons using selective chemical vapor deposition. Current Applied Physics, 2012, 12, 1113-1117.	2.4	16
130	Plasma Treatment to Improve Chemical Vapor Deposition-Grown Graphene to Metal Electrode Contact. Japanese Journal of Applied Physics, 2012, 51, 04DN04.	1.5	4
131	Local conductance measurement of graphene layer using conductive atomic force microscopy. Journal of Applied Physics, 2011, 110, .	2.5	49
132	Ridge Formation and Removal via Annealing in Exfoliated Graphene. Journal of Nanoscience and Nanotechnology, 2011, 11, 5949-5954.	0.9	8
133	Thermoelectric Properties of Ca _{1â``<l>x</l>â``<l>y</l>} Dy _{<l>x</l>} Ce _{<l>y</l>} MnO ₃ for Power Generation. Journal of Nanoscience and Nanotechnology, 2011, 11, 7176-7179.	0.9	7
134	Graphene synthesis on Fe foil using thermal CVD. Current Applied Physics, 2011, 11, S81-S85.	2.4	99
135	Agglomeration effects of thin metal catalyst on graphene film synthesized by chemical vapor deposition. Electronic Materials Letters, 2011, 7, 261-264.	2.2	17
136	Growth of Few‣ayer Graphene on a Thin Cobalt Film on a Si/SiO ₂ Substrate. Chemical Vapor Deposition, 2011, 17, 9-14.	1.3	38
137	High frequency transmission properties of graphene monolayer with different coplanar waveguide electrode configurations. , 2011, , .		2
138	Charge Trapping Characteristics of Variable Oxide Thickness Tunnel Barrier with SiO2/HfO2or Al2O3/HfO2Stacks for Nonvolatile Memories. Japanese Journal of Applied Physics, 2009, 48, 06FD11.	1.5	4
139	Hole mobility and device characteristics of SiGe dual channel structure. Current Applied Physics, 2009, 9, S47-S50.	2.4	4
140	Electrical Characteristics of SiO\$_{2}\$/High-k Dielectric Stacked Tunnel Barriers for Nonvolatile Memory Applications. Journal of the Korean Physical Society, 2009, 55, 116-119.	0.7	11
141	Charge Trapping Characteristics of HfO\$_{2}\$ Layers forTunnel-barrier-engineered Nonvolatile Memory Applications. Journal of the Korean Physical Society, 2009, 55, 962-965.	0.7	11
142	Three-Dimensional stacked CMOS Inverters Using Laser-Crystallized Poly-Si TFTs. Journal of the Korean Physical Society, 2009, 54, 1798-1801.	0.7	0
143	Fabrication of Low Temperature Polycrystalline Silicon Thin-Film Transistor Nonvolatile Memory Devices for Digital Memory on Glass Applications. Japanese Journal of Applied Physics, 2008, 47, 2728-2732.	1.5	6
144	Decreasing Dark Current of Complementary Metal Oxide Semiconductor Image Sensors by New Postmetallization Annealing and Ultraviolet Curing. Japanese Journal of Applied Physics, 2008, 47, 139.	1.5	9

#	Article	IF	CITATIONS
145	Dedicated Process Architecture and the Characteristics of 1.4 $\hat{A}_{\dot{c}}$ m Pixel CMOS Image Sensor with 8M Density. , 2007, , .		6
146	Application of Plasma-Doping (PLAD) Technique to Reduce Dark Current of CMOS Image Sensors. IEEE Electron Device Letters, 2007, 28, 114-116.	3.9	31
147	Deep Trench Isolation for Crosstalk Suppression in Active Pixel Sensors with 1.7 µm Pixel Pitch. Japanese Journal of Applied Physics, 2007, 46, 2454-2457.	1.5	35
148	Reduction of Random Noise in Complementary Metal Oxide Semiconductor Image Sensors by Gate Oxide Interface Control. Japanese Journal of Applied Physics, 2006, 45, 3466-3469.	1.5	8
149	1/2.5" 8 mega-pixel CMOS Image Sensor with enhanced image quality for DSC application. , 2006, , .		2
150	Hole mobility enhancement in strained-Si/strained-SiGe heterostructure p-MOSFETs fabricated on SiGe-on-insulator (SGOI). Semiconductor Science and Technology, 2004, 19, L48-L51.	2.0	13
151	Tradeoff Between Mobility and Subthreshold Characteristics in Dual-Channel Heterostrucure n- and p-MOSFETs. IEEE Electron Device Letters, 2004, 25, 562-564.	3.9	11
152	Strained-Si–Strained-SiGe Dual-Channel Layer Structure as CMOS Substrate for Single Workfunction Metal-Gate Technology. IEEE Electron Device Letters, 2004, 25, 402-404.	3.9	17
153	Fully Depleted Strained-SOI n- and p-MOSFETs on Bonded SGOI Substrates and Study of the SiGe/BOX Interface. IEEE Electron Device Letters, 2004, 25, 147-149.	3.9	13
154	Effect of thermal processing on mobility in strained Si/strained Si1â^'yGey on relaxed Si1â^'xGex (x <y) virtual substrates. Applied Physics Letters, 2004, 84, 3319-3321.</y) 	3.3	25
155	Mobility Enhancement in Dual-Channel P-MOSFETs. IEEE Transactions on Electron Devices, 2004, 51, 1424-1431.	3.0	11
156	Sensitive Strain Measurements of Bonded SOI Films Using MoirÉ. IEEE Transactions on Semiconductor Manufacturing, 2004, 17, 35-41.	1.7	4
157	Implementation of both high-hole and electron mobility in strained Si/strained Si _{1-y} Ge _y on relaxed Si _{1-x} Ge _x (x <y) substrate.<br="" virtual="">IEEE Electron Device Letters, 2003, 24, 460-462.</y)>	3.9	57
158	Dependence of Subthreshold Hump and Reverse Narrow Channel Effect on the Gate Length by Suppression of Transient Enhanced Diffusion at Trench Isolation Edge. Japanese Journal of Applied Physics, 2000, 39, 2136-2140.	1.5	5
159	Study of Optimization Guidelines on Nitrogen Concentration in Nitrided Oxide for Logic and Dynamic Random Access Memory Application. Japanese Journal of Applied Physics, 2000, 39, 2203-2207.	1.5	0
160	Two-step rapid thermal annealing (TS-RTA) to suppress out-diffusion of dopants without degrading short channel effect of transistor. IEEE Electron Device Letters, 2000, 21, 376-377.	3.9	3
161	Novel Dual Gate Oxide Process with Improved Gate Oxide Integrity Reliability. Electrochemical and Solid-State Letters, 1999, 3, 56.	2.2	3
162	New Fabrication Technology for Integrating Field Effect Transistors and Diodes. Japanese Journal of Applied Physics, 1996, 35, 1194-1197.	1.5	12