
Paul W Frankland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3063458/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Restoration of hippocampal neural precursor function by ablation of senescent cells in the aging stem cell niche. Stem Cell Reports, 2022, 17, 259-275.	4.8	21
2	Forgetting as a form of adaptive engram cell plasticity. Nature Reviews Neuroscience, 2022, 23, 173-186.	10.2	70
3	PTCHD1: Identification and Neurodevelopmental Contributions of an Autism Spectrum Disorder and Intellectual Disability Susceptibility Gene. Genes, 2022, 13, 527.	2.4	7
4	COVID fog demystified. Cell, 2022, 185, 2391-2393.	28.9	15
5	An inhibitory hippocampal–thalamic pathway modulates remote memory retrieval. Nature Neuroscience, 2021, 24, 685-693.	14.8	31
6	To learn something new, do something new. Cell Research, 2021, 31, 611-612.	12.0	0
7	Neural correlates of ingroup bias for prosociality in rats. ELife, 2021, 10, .	6.0	33
8	Neurogenesis-dependent transformation of hippocampal engrams. Neuroscience Letters, 2021, 762, 136176.	2.1	11
9	Voluntary Exercise Increases Neurogenesis and Mediates Forgetting of Complex Paired Associates Memories. Neuroscience, 2021, 475, 1-9.	2.3	11
10	A 3D adult zebrafish brain atlas (AZBA) for the digital age. ELife, 2021, 10, .	6.0	22
11	The role of the genome in experience-dependent plasticity: Extending the analogy of the genomic action potential. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23252-23260.	7.1	44
12	A time-dependent role for the transcription factor CREB in neuronal allocation to an engram underlying a fear memory revealed using a novel in vivo optogenetic tool to modulate CREB function. Neuropsychopharmacology, 2020, 45, 916-924.	5.4	25
13	Disruption of Oligodendrogenesis Impairs Memory Consolidation in Adult Mice. Neuron, 2020, 105, 150-164.e6.	8.1	263
14	Automated Curation of CNMF-E-Extracted ROI Spatial Footprints and Calcium Traces Using Open-Source AutoML Tools. Frontiers in Neural Circuits, 2020, 14, 42.	2.8	10
15	Starring role for astrocytes in memory. Nature Neuroscience, 2020, 23, 1181-1182.	14.8	5
16	The role of neuronal excitability, allocation to an engram and memory linking in the behavioral generation of a false memory in mice. Neurobiology of Learning and Memory, 2020, 174, 107284.	1.9	21
17	Activity-dependent myelination: A glial mechanism of oscillatory self-organization in large-scale brain networks. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13227-13237.	7.1	79
18	Forgetting at biologically realistic levels of neurogenesis in a large-scale hippocampal model. Behavioural Brain Research, 2019, 376, 112180.	2.2	17

#	Article	IF	CITATIONS
19	Ptchd1 exon3 truncating mutations recapitulate more clinically relevant autistic-like traits in mice. IBRO Reports, 2019, 6, S507.	0.3	1
20	Memory formation in the absence of experience. Nature Neuroscience, 2019, 22, 933-940.	14.8	77
21	Hippocampal clock regulates memory retrieval via Dopamine and PKA-induced GluA1 phosphorylation. Nature Communications, 2019, 10, 5766.	12.8	43
22	The neurobiological foundation of memory retrieval. Nature Neuroscience, 2019, 22, 1576-1585.	14.8	116
23	Mesenchymal Precursor Cells in Adult Nerves Contribute to Mammalian Tissue Repair and Regeneration. Cell Stem Cell, 2019, 24, 240-256.e9.	11.1	159
24	The ontogeny of memory persistence and specificity. Developmental Cognitive Neuroscience, 2019, 36, 100591.	4.0	38
25	Abolition of aberrant neurogenesis ameliorates cognitive impairment after stroke in mice. Journal of Clinical Investigation, 2019, 129, 1536-1550.	8.2	84
26	Human Adult Neurogenesis: Evidence and Remaining Questions. Cell Stem Cell, 2018, 23, 25-30.	11.1	601
27	Elevation of Hippocampal Neurogenesis Induces a Temporally Graded Pattern of Forgetting of Contextual Fear Memories. Journal of Neuroscience, 2018, 38, 3190-3198.	3.6	70
28	Memory Allocation: Mechanisms and Function. Annual Review of Neuroscience, 2018, 41, 389-413.	10.7	130
29	Cognitive Neuroscience: Exciting Developments in Schematic Learning. Current Biology, 2018, 28, R1096-R1098.	3.9	0
30	Fear Extinction Requires Reward. Cell, 2018, 175, 639-640.	28.9	8
31	Ectopic expression of aPKC-mediated phosphorylation in p300 modulates hippocampal neurogenesis, CREB binding and fear memory differently with age. Scientific Reports, 2018, 8, 13489.	3.3	5
32	Memory: Ironing Out a Wrinkle in Time. Current Biology, 2018, 28, R599-R601.	3.9	1
33	Recovery of "Lost―Infant Memories in Mice. Current Biology, 2018, 28, 2283-2290.e3.	3.9	93
34	Assessing Individual Neuronal Activity Across the Intact Brain: Using Hybridization Chain Reaction (HCR) to Detect <i>Arc</i> mRNA Localized to the Nucleus in Volumes of Cleared Brain Tissue. Current Protocols in Neuroscience, 2018, 84, e49.	2.6	10
35	A Compact Headâ€Mounted Endoscope for In Vivo Calcium Imaging in Freely Behaving Mice. Current Protocols in Neuroscience, 2018, 84, e51.	2.6	55
36	Impaired Recent, but Preserved Remote, Autobiographical Memory in Pediatric Brain Tumor Patients. Journal of Neuroscience, 2018, 38, 8251-8261.	3.6	15

#	Article	IF	CITATIONS
37	Facing your fears. Science, 2018, 360, 1186-1187.	12.6	4
38	The Role of The RNA Demethylase FTO (Fat Mass and Obesity-Associated) and mRNA Methylation in Hippocampal Memory Formation. Neuropsychopharmacology, 2017, 42, 1502-1510.	5.4	145
39	Chemogenetic Interrogation of a Brain-wide Fear Memory Network in Mice. Neuron, 2017, 94, 363-374.e4.	8.1	211
40	Running promotes spatial bias independently of adult neurogenesis. Hippocampus, 2017, 27, 871-882.	1.9	17
41	Heroes of the Engram. Journal of Neuroscience, 2017, 37, 4647-4657.	3.6	79
42	The Persistence and Transience of Memory. Neuron, 2017, 94, 1071-1084.	8.1	195
43	Entorhinal Cortical Deep Brain Stimulation Rescues Memory Deficits in Both Young and Old Mice Genetically Engineered to Model Alzheimer's Disease. Neuropsychopharmacology, 2017, 42, 2493-2503.	5.4	44
44	Functional Connectivity of Multiple Brain Regions Required for the Consolidation of Social Recognition Memory. Journal of Neuroscience, 2017, 37, 4103-4116.	3.6	170
45	Age-dependent changes in spatial memory retention and flexibility in mice. Neurobiology of Learning and Memory, 2017, 143, 59-66.	1.9	31
46	Contextual fear conditioning in zebrafish. Learning and Memory, 2017, 24, 516-523.	1.3	44
47	Cover Image, Volume 27, Issue 8. Hippocampus, 2017, 27, C1.	1.9	1
48	Memory allocation and integration in rodents and humans. Current Opinion in Behavioral Sciences, 2017, 17, 90-98.	3.9	23
49	Parvalbumin-positive interneurons mediate neocortical-hippocampal interactions that are necessary for memory consolidation. ELife, 2017, 6, .	6.0	151
50	Memory Transformation Enhances Reinforcement Learning in Dynamic Environments. Journal of Neuroscience, 2016, 36, 12228-12242.	3.6	17
51	Neurogenesis-mediated forgetting minimizes proactive interference. Nature Communications, 2016, 7, 10838.	12.8	179
52	Neuronal Allocation to a Hippocampal Engram. Neuropsychopharmacology, 2016, 41, 2987-2993.	5.4	133
53	The Young and the Promiscuous. Neuron, 2016, 90, 6-8.	8.1	1
54	Re-engineering the Hippocampus. Neuron, 2016, 91, 1190-1191.	8.1	2

#	Article	IF	CITATIONS
55	The aPKC-CBP Pathway Regulates Adult Hippocampal Neurogenesis in an Age-Dependent Manner. Stem Cell Reports, 2016, 7, 719-734.	4.8	12
56	Parvalbumin interneurons constrain the size of the lateral amygdala engram. Neurobiology of Learning and Memory, 2016, 135, 91-99.	1.9	74
57	Competition between engrams influences fear memory formation and recall. Science, 2016, 353, 383-387.	12.6	278
58	A Glo1-Methylglyoxal Pathway that Is Perturbed in Maternal Diabetes Regulates Embryonic and Adult Neural Stem Cell Pools in Murine Offspring. Cell Reports, 2016, 17, 1022-1036.	6.4	35
59	In search of the memory molecule. Nature, 2016, 535, 41-42.	27.8	7
60	Hippocampal Neurogenesis and Memory Clearance. Neuropsychopharmacology, 2016, 41, 382-383.	5.4	27
61	Deep brain stimulation of the ventromedial prefrontal cortex causes reorganization of neuronal processes and vasculature. NeuroImage, 2016, 125, 422-427.	4.2	41
62	Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 822-829.	7.1	197
63	Hippocampal neurogenesis enhancers promote forgetting of remote fear memory after hippocampal reactivation by retrieval. ELife, 2016, 5, .	6.0	77
64	Optimization of CLARITY for Clearing Whole-Brain and Other Intact Organs. ENeuro, 2015, 2, ENEURO.0022-15.2015.	1.9	123
65	Development of Adult-Generated Cell Connectivity with Excitatory and Inhibitory Cell Populations in the Hippocampus. Journal of Neuroscience, 2015, 35, 10600-10612.	3.6	81
66	Finding the engram. Nature Reviews Neuroscience, 2015, 16, 521-534.	10.2	493
67	Rotarod training in mice is associated with changes in brain structure observable with multimodal MRI. NeuroImage, 2015, 107, 182-189.	4.2	65
68	Memory Allocation. Neuropsychopharmacology, 2015, 40, 243-243.	5.4	61
69	Another twist in the histone memory code. Cell Research, 2015, 25, 151-152.	12.0	1
70	Mechanism, function, and computation in neural systems. Behavioural Processes, 2015, 117, 4-11.	1.1	3
71	Whole-brain mapping of behaviourally induced neural activation in mice. Brain Structure and Function, 2015, 220, 2043-2057.	2.3	56
72	PTG protein depletion rescues malinâ€deficient Lafora disease in mouse. Annals of Neurology, 2014, 75, 442-446.	5.3	76

#	Article	IF	CITATIONS
73	Posttraining Ablation of Adult-Generated Olfactory Granule Cells Degrades Odor–Reward Memories. Journal of Neuroscience, 2014, 34, 15793-15803.	3.6	27
74	Hippocampal Neurogenesis Regulates Forgetting During Adulthood and Infancy. Science, 2014, 344, 598-602.	12.6	579
75	Manipulating a "Cocaine Engram―in Mice. Journal of Neuroscience, 2014, 34, 14115-14127.	3.6	98
76	Conditional Deletion of α-CaMKII Impairs Integration of Adult-Generated Granule Cells into Dentate Gyrus Circuits and Hippocampus-Dependent Learning. Journal of Neuroscience, 2014, 34, 11919-11928.	3.6	35
77	Chasing the Trace. Neuron, 2014, 84, 243-246.	8.1	4
78	Neurons Are Recruited to a Memory Trace Based on Relative Neuronal Excitability Immediately before Training. Neuron, 2014, 83, 722-735.	8.1	319
79	Patterns across multiple memories are identified over time. Nature Neuroscience, 2014, 17, 981-986.	14.8	130
80	Making connections. ELife, 2014, 3, .	6.0	1
81	Ageâ€dependent effects of hippocampal neurogenesis suppression on spatial learning. Hippocampus, 2013, 23, 66-74.	1.9	56
82	p63 Regulates Adult Neural Precursor and Newly Born Neuron Survival to Control Hippocampal-Dependent Behavior. Journal of Neuroscience, 2013, 33, 12569-12585.	3.6	45
83	Memory and the single molecule. Nature, 2013, 493, 312-313.	27.8	39
84	The conjunctive trace. Hippocampus, 2013, 23, 207-212.	1.9	26
85	mTORC2: actin on your memory. Nature Neuroscience, 2013, 16, 379-380.	14.8	11
86	Hippocampal neurogenesis and forgetting. Trends in Neurosciences, 2013, 36, 497-503.	8.6	195
87	Disrupting Jagged1–Notch signaling impairs spatial memory formation in adult mice. Neurobiology of Learning and Memory, 2013, 103, 39-49.	1.9	28
88	Neurogenic evangelism: Comment on Urbach et al. (2013) Behavioral Neuroscience, 2013, 127, 126-129.	1.2	14
89	Adolescent Cocaine Exposure Causes Enduring Macroscale Changes in Mouse Brain Structure. Journal of Neuroscience, 2013, 33, 1797-1803.	3.6	38
90	Inhibiting glycogen synthesis prevents lafora disease in a mouse model. Annals of Neurology, 2013, 74, 297-300.	5.3	91

#	Article	IF	CITATIONS
91	Chronic over-expression of TGFβ1 alters hippocampal structure and causes learning deficits. Hippocampus, 2013, 23, 1198-1211.	1.9	25
92	Deficiency of a Glycogen Synthase-associated Protein, Epm2aip1, Causes Decreased Glycogen Synthesis and Hepatic Insulin Resistance. Journal of Biological Chemistry, 2013, 288, 34627-34637.	3.4	14
93	CREB regulates spine density of lateral amygdala neurons: implications for memory allocation. Frontiers in Behavioral Neuroscience, 2013, 7, 209.	2.0	40
94	Identification of a Functional Connectome for Long-Term Fear Memory in Mice. PLoS Computational Biology, 2013, 9, e1002853.	3.2	246
95	Adult Hippocampal Neurogenesis and Memory. , 2012, , 81-146.		2
96	Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nature Neuroscience, 2012, 15, 1700-1706.	14.8	371
97	Ontogeny of contextual fear memory formation, specificity, and persistence in mice. Learning and Memory, 2012, 19, 598-604.	1.3	58
98	Increasing CRTC1 Function in the Dentate Gyrus during Memory Formation or Reactivation Increases Memory Strength without Compromising Memory Quality. Journal of Neuroscience, 2012, 32, 17857-17868.	3.6	89
99	Metformin Activates an Atypical PKC-CBP Pathway to Promote Neurogenesis and Enhance Spatial Memory Formation. Cell Stem Cell, 2012, 11, 23-35.	11.1	396
100	Infantile amnesia: A neurogenic hypothesis. Learning and Memory, 2012, 19, 423-433.	1.3	110
101	MEF2 negatively regulates learning-induced structural plasticity and memory formation. Nature Neuroscience, 2012, 15, 1255-1264.	14.8	108
102	Maze training in mice induces MRI-detectable brain shape changes specific to the type of learning. NeuroImage, 2011, 54, 2086-2095.	4.2	276
103	Posttraining Ablation of Adult-Generated Neurons Degrades Previously Acquired Memories. Journal of Neuroscience, 2011, 31, 15113-15127.	3.6	166
104	Functional convergence of developmentally and adultâ€generated granule cells in dentate gyrus circuits supporting hippocampusâ€dependent memory. Hippocampus, 2011, 21, 1348-1362.	1.9	144
105	Stimulation of Entorhinal Cortex Promotes Adult Neurogenesis and Facilitates Spatial Memory. Journal of Neuroscience, 2011, 31, 13469-13484.	3.6	336
106	Spine growth in the anterior cingulate cortex is necessary for the consolidation of contextual fear memory. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8456-8460.	7.1	152
107	Increased transforming growth factor-β1 modulates glutamate receptor expression in the hippocampus. International Journal of Physiology, Pathophysiology and Pharmacology, 2011, 3, 9-20.	0.8	26
108	Shifting to automatic. Frontiers in Integrative Neuroscience, 2010, 4, 1.	2.1	96

#	Article	IF	CITATIONS
109	Dorsal hippocampal CREB is both necessary and sufficient for spatial memory. Learning and Memory, 2010, 17, 280-283.	1.3	88
110	Uncoupling the D1-N-Methyl-D-Aspartate (NMDA) Receptor Complex Promotes NMDA-Dependent Long-Term Potentiation and Working Memory. Biological Psychiatry, 2010, 67, 246-254.	1.3	70
111	Brain Region-Specific Gene Expression Activation Required for Reconsolidation and Extinction of Contextual Fear Memory. Journal of Neuroscience, 2009, 29, 402-413.	3.6	237
112	Changes in context-specificity during memory reconsolidation: Selective effects of hippocampal lesions. Learning and Memory, 2009, 16, 722-729.	1.3	90
113	The precision of remote context memories does not require the hippocampus. Nature Neuroscience, 2009, 12, 253-255.	14.8	132
114	Selective Erasure of a Fear Memory. Science, 2009, 323, 1492-1496.	12.6	461
115	Treatment of inflammatory and neuropathic pain by uncoupling Src from the NMDA receptor complex. Nature Medicine, 2008, 14, 1325-1332.	30.7	195
116	Regenerating your senses: multiple roles for neurogenesis in the adult brain. Nature Neuroscience, 2008, 11, 1124-1126.	14.8	8
117	p73 Regulates Neurodegeneration and Phospho-Tau Accumulation during Aging and Alzheimer's Disease. Neuron, 2008, 59, 708-721.	8.1	84
118	Inactivation of the anterior cingulate cortex blocks expression of remote, but not recent, conditioned taste aversion memory. Learning and Memory, 2008, 15, 290-293.	1.3	60
119	Activation of LVGCCs and CB1 receptors required for destabilization of reactivated contextual fear memories. Learning and Memory, 2008, 15, 426-433.	1.3	128
120	Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nature Neuroscience, 2007, 10, 355-362.	14.8	761
121	Imaging activation of adult-generated granule cells in spatial memory. Nature Protocols, 2007, 2, 3033-3044.	12.0	53
122	Grading the gradient: Evidence for time-dependent memory reorganization in experimental animals. Debates in Neuroscience, 2007, 1, 67-78.	1.7	12
123	Stability of recent and remote contextual fear memory. Learning and Memory, 2006, 13, 451-457.	1.3	217
124	Fast track to the medial prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 509-510.	7.1	57
125	Involvement of the Anterior Cingulate Cortex in the Expression of Remote Spatial Memory. Journal of Neuroscience, 2006, 26, 7555-7564.	3.6	238
126	The organization of recent and remote memories. Nature Reviews Neuroscience, 2005, 6, 119-130.	10.2	1,693

#	Article	IF	CITATIONS
127	The HMG-CoA Reductase Inhibitor Lovastatin Reverses the Learning and Attention Deficits in a Mouse Model of Neurofibromatosis Type 1. Current Biology, 2005, 15, 1961-1967.	3.9	361
128	Distinct Influences of Neonatal Epidermal Growth Factor Challenge on Adult Neurobehavioral Traits in Four Mouse Strains. Behavior Genetics, 2005, 35, 615-629.	2.1	41
129	Consolidation of CS and US representations in associative fear conditioning. Hippocampus, 2004, 14, 557-569.	1.9	125
130	Memory Reconsolidation and Extinction Have Distinct Temporal and Biochemical Signatures. Journal of Neuroscience, 2004, 24, 4787-4795.	3.6	1,010
131	The Involvement of the Anterior Cingulate Cortex in Remote Contextual Fear Memory. Science, 2004, 304, 881-883.	12.6	805
132	Pharmacologically Regulated Induction of Silent Mutations (PRISM): Combined Pharmacological and Genetic Approaches for Learning and Memory. Neuroscientist, 2003, 9, 104-109.	3.5	6
133	A Pharmacogenetic Inducible Approach to the Study of NMDA/αCaMKII Signaling in Synaptic Plasticity. Current Biology, 2002, 12, 654-656.	3.9	34
134	Tactile, acoustic and vestibular systems sum to elicit the startle reflex. Neuroscience and Biobehavioral Reviews, 2002, 26, 1-11.	6.1	271
135	Inducible, pharmacogenetic approaches to the study of learning and memory. Nature Neuroscience, 2001, 4, 1238-1243.	14.8	102
136	$\hat{I}\pm$ -CaMKII-dependent plasticity in the cortex is required for permanent memory. Nature, 2001, 411, 309-313.	27.8	368
137	Computer-Assisted Behavioral Assessment of Pavlovian Fear Conditioning in Mice. Learning and Memory, 2000, 7, 58-72.	1.3	150
138	CREB AND MEMORY. Annual Review of Neuroscience, 1998, 21, 127-148.	10.7	1,345
139	Molecular, Cellular, and Neuroanatomical Substrates of Place Learning. Neurobiology of Learning and Memory, 1998, 70, 44-61.	1.9	83
140	Activation of Amygdala CholecystokininBReceptors Potentiates the Acoustic Startle Response in the Rat. Journal of Neuroscience, 1997, 17, 1838-1847.	3.6	78
141	A mouse model for the learning and memory deficits associated with neurofibromatosis type I. Nature Genetics, 1997, 15, 281-284.	21.4	336
142	Spaced training induces normal long-term memory in CREB mutant mice. Current Biology, 1997, 7, 1-11.	3.9	322
143	Intracerebroventricular infusion of the CCKB receptor agonist pentagastrin potentiates acoustic startle. Brain Research, 1996, 733, 129-132.	2.2	18
144	Impaired learning in mice with abnormal short-lived plasticity. Current Biology, 1996, 6, 1509-1518.	3.9	169

#	Article	IF	CITATIONS
145	Axons and synapses mediating electrically evoked startle: collision tests and latency analysis. Brain Research, 1995, 670, 97-111.	2.2	35
146	The acoustic startle reflex: neurons and connections. Brain Research Reviews, 1995, 21, 301-314.	9.0	394