Saulius Klimasauskas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3063389/publications.pdf Version: 2024-02-01

		87888	74163
103	5,919	38	75
papers	citations	h-index	g-index
113	113	113	4497
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Associations of Chronic Kidney Disease With Dementia Before and After TIA and Stroke. Neurology, 2022, 98, .	1.1	9
2	Distribution and regulatory roles of oxidized 5-methylcytosines in DNA and RNA of the basidiomycete fungi <i>Laccaria bicolor</i> and <i>Coprinopsis cinerea</i> . Open Biology, 2022, 12, 210302.	3.6	4
3	Selective chemical tracking of Dnmt1 catalytic activity in live cells. Molecular Cell, 2022, 82, 1053-1065.e8.	9.7	9
4	FANCD2 maintains replication fork stability during misincorporation of the DNA demethylation products 5-hydroxymethyl-2'-deoxycytidine and 5-hydroxymethyl-2'-deoxyuridine. Cell Death and Disease, 2022, 13, .	6.3	3
5	Enhanced nucleosome assembly at CpG sites containing an extended 5-methylcytosine analogue. Nucleic Acids Research, 2022, 50, 6549-6561.	14.5	5
6	Impact of multimorbidity on risk and outcome of stroke: Lessons from chronic kidney disease. International Journal of Stroke, 2021, 16, 758-770.	5.9	6
7	Stroke and Chronic Kidney Disease. Contributions To Nephrology, 2021, 199, 80-90.	1.1	6
8	International Society of Nephrology Global Kidney Health Atlas: structures, organization, and services for the management of kidney failure in Western Europe. Kidney International Supplements, 2021, 11, e106-e118.	14.2	29
9	Selective immunocapture and light-controlled traceless release of transiently caged proteins. STAR Protocols, 2021, 2, 100455.	1.2	0
10	Alleviation of Câ‹C Mismatches in DNA by the Escherichia coli Fpg Protein. Frontiers in Microbiology, 2021, 12, 608839.	3.5	1
11	Methyltransferase-directed orthogonal tagging and sequencing of miRNAs and bacterial small RNAs. BMC Biology, 2021, 19, 129.	3.8	1
12	Chronic Kidney Disease and Cerebrovascular Disease. Stroke, 2021, 52, e328-e346.	2.0	56
13	Central and peripheral arterial diseases in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney International, 2021, 100, 35-48.	5.2	26
14	Prevention and treatment of stroke in patients with chronic kidney disease: an overview of evidence and current guidelines. Kidney International, 2020, 97, 266-278.	5.2	33
15	Photocage-Selective Capture and Light-Controlled Release of Target Proteins. IScience, 2020, 23, 101833.	4.1	3
16	Enzymatic Hydroxylation and Excision of Extended 5-Methylcytosine Analogues. Journal of Molecular Biology, 2020, 432, 6157-6167.	4.2	6
17	Etiological Subtypes of Transient Ischemic Attack and Ischemic Stroke in Chronic Kidney Disease. Stroke, 2020, 51, 2786-2794.	2.0	12
18	Proteinuria as an independent predictor of stroke: Systematic review and meta-analysis. International Journal of Stroke, 2020, 15, 29-38.	5.9	32

#	Article	IF	CITATIONS
19	Precise genomic mapping of 5-hydroxymethylcytosine via covalent tether-directed sequencing. PLoS Biology, 2020, 18, e3000684.	5.6	15
20	Does Chronic Kidney Disease Predict Stroke Risk Independent of Blood Pressure?. Stroke, 2019, 50, 3085-3092.	2.0	45
21	An Adversarial DNA N6-Methyladenine-Sensor Network Preserves Polycomb Silencing. Molecular Cell, 2019, 74, 1138-1147.e6.	9.7	109
22	Editorial overview: Current advances in analytical biotechnology: from single molecules to whole organisms. Current Opinion in Biotechnology, 2019, 55, iii-vi.	6.6	1
23	The role of dialysis in the pathogenesis and treatment of dementia. Nephrology Dialysis Transplantation, 2019, 34, 1080-1083.	0.7	2
24	Repurposing enzymatic transferase reactions for targeted labeling and analysis of DNA and RNA. Current Opinion in Biotechnology, 2019, 55, 114-123.	6.6	22
25	Excision of the doubly methylated base <i>N</i> ⁴ ,5-dimethylcytosine from DNA by <i>Escherichia coli</i> Nei and Fpg proteins. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170337.	4.0	8
26	Phenotyping cognitive impairment in dialysis patients: insights from experimental mouse models. Acta Neuropathologica, 2018, 135, 157-158.	7.7	0
27	Animal Hen1 2′-O-methyltransferases as tools for 3′-terminal functionalization and labelling of single-stranded RNAs. Nucleic Acids Research, 2018, 46, e104-e104.	14.5	18
28	Tethered Oligonucleotide-Primed Sequencing, TOP-Seq: A High-Resolution Economical Approach for DNA Epigenome Profiling. Molecular Cell, 2017, 65, 554-564.e6.	9.7	26
29	Oligonucleotideâ€Addressed Covalent 3′â€īerminal Derivatization of Small RNA Strands for Enrichment and Visualization. Angewandte Chemie - International Edition, 2017, 56, 6507-6510.	13.8	15
30	Oligonucleotideâ€Addressed Covalent 3′â€Terminal Derivatization of Small RNA Strands for Enrichment and Visualization. Angewandte Chemie, 2017, 129, 6607-6610.	2.0	3
31	Archaeal fibrillarin–Nop5 heterodimer 2′-O-methylates RNA independently of the C/D guide RNP particle. Rna, 2017, 23, 1329-1337.	3.5	6
32	Synthesis of <i>S</i> â€Adenosylâ€Lâ€Methionine Analogs with Extended Transferable Groups for Methyltransferaseâ€Directed Labeling of DNA and RNA. Current Protocols in Nucleic Acid Chemistry, 2016, 64, 1.36.1-1.36.13.	0.5	12
33	DNA Labeling Using DNA Methyltransferases. Advances in Experimental Medicine and Biology, 2016, 945, 511-535.	1.6	5
34	Lineage-specific variations in the trigger loop modulate RNA proofreading by bacterial RNA polymerases. Nucleic Acids Research, 2016, 44, 1298-1308.	14.5	26
35	Tandem virtual screening targeting the SRA domain of UHRF1 identifies a novel chemical tool modulating DNA methylation. European Journal of Medicinal Chemistry, 2016, 114, 390-396.	5.5	34
36	Biosynthetic selenoproteins with genetically-encoded photocaged selenocysteines. Chemical Communications, 2015, 51, 8245-8248.	4.1	42

#	Article	IF	CITATIONS
37	Functional mapping of the plant small RNA methyltransferase: HEN1 physically interacts with HYL1 and DICER-LIKE 1 proteins. Nucleic Acids Research, 2015, 43, 2802-2812.	14.5	67
38	Interplay between the trigger loop and the F loop during RNA polymerase catalysis. Nucleic Acids Research, 2014, 42, 544-552.	14.5	25
39	Selective Covalent Labeling of miRNA and siRNA Duplexes Using HEN1 Methyltransferase. Journal of the American Chemical Society, 2014, 136, 13550-13553.	13.7	36
40	Direct Decarboxylation of 5-Carboxylcytosine by DNA C5- Methyltransferases. Journal of the American Chemical Society, 2014, 136, 5884-5887.	13.7	56
41	DNA unmethylome profiling by covalent capture of CpG sites. Nature Communications, 2013, 4, 2190.	12.8	53
42	Enhanced Chemical Stability of AdoMet Analogues for Improved Methyltransferase-Directed Labeling of DNA. ACS Chemical Biology, 2013, 8, 1134-1139.	3.4	53
43	Mechanistic insights into small RNA recognition and modification by the HEN1 methyltransferase. Biochemical Journal, 2013, 453, 281-290.	3.7	13
44	Recognition of guanosine by dissimilar tRNA methyltransferases. Rna, 2012, 18, 1687-1701.	3.5	29
45	Engineering the DNA cytosine-5 methyltransferase reaction for sequence-specific labeling of DNA. Nucleic Acids Research, 2012, 40, 11594-11602.	14.5	42
46	Programmable sequence-specific click-labeling of RNA using archaeal box C/D RNP methyltransferases. Nucleic Acids Research, 2012, 40, 6765-6773.	14.5	90
47	5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary. Nature Structural and Molecular Biology, 2012, 19, 1037-1043.	8.2	221
48	5-Hydroxymethylcytosine – the elusive epigenetic mark in mammalian DNA. Chemical Society Reviews, 2012, 41, 6916.	38.1	71
49	Usage of rRNA-methyltransferase for site-specific fluorescent labeling. Moscow University Chemistry Bulletin, 2012, 67, 88-93.	0.6	1
50	Methyltransferaseâ€Directed Derivatization of 5â€Hydroxymethylcytosine in DNA. Angewandte Chemie - International Edition, 2011, 50, 2090-2093.	13.8	51
51	Direct observation of cytosine flipping and covalent catalysis in a DNA methyltransferase. Nucleic Acids Research, 2011, 39, 3771-3780.	14.5	38
52	Kinetic and functional analysis of the small RNA methyltransferase HEN1: The catalytic domain is essential for preferential modification of duplex RNA. Rna, 2010, 16, 1935-1942.	3.5	25
53	Modulation of RNA polymerase activity through the trigger loop folding. Transcription, 2010, 1, 89-94.	3.1	9
54	DNA fluorocode: A single molecule, optical map of DNA with nanometre resolution. Chemical Science, 2010, 1, 453.	7.4	88

#	Article	IF	CITATIONS
55	Allosteric control of catalysis by the F loop of RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18942-18947.	7.1	41
56	Cytosine-5-methyltransferases add aldehydes to DNA. Nature Chemical Biology, 2009, 5, 400-402.	8.0	133
57	A directed evolution design of a GCG-specific DNA hemimethylase. Nucleic Acids Research, 2009, 37, 7332-7341.	14.5	21
58	Biophysical Approaches To Study Dna Base Flipping. NATO Science for Peace and Security Series B: Physics and Biophysics, 2009, , 51-64.	0.3	0
59	Chemical mapping of cytosines enzymatically flipped out of the DNA helix. Nucleic Acids Research, 2008, 36, e57-e57.	14.5	12
60	Specific Recognition of the -10 Promoter Element by the Free RNA Polymerase Ï f Subunit. Journal of Biological Chemistry, 2007, 282, 22033-22039.	3.4	11
61	Targeted Labeling of DNA by Methyltransferase-Directed Transfer of Activated Groups (mTAG). Journal of the American Chemical Society, 2007, 129, 2758-2759.	13.7	110
62	Approaches for Studying MicroRNA and Small Interfering RNA Methylation In Vitro and In Vivo. Methods in Enzymology, 2007, 427, 139-154.	1.0	32
63	The stereochemistry of benzo[a]pyrene-2′-deoxyguanosine adducts affects DNA methylation by SssI and Hhal DNA methyltransferases. FEBS Journal, 2007, 274, 2121-2134.	4.7	15
64	A new tool for biotechnology: AdoMet-dependent methyltransferases. Trends in Biotechnology, 2007, 25, 99-104.	9.3	106
65	A Basal Promoter Element Recognized by Free RNA Polymerase σ Subunit Determines Promoter Recognition by RNA Polymerase Holoenzyme. Molecular Cell, 2006, 23, 97-107.	9.7	87
66	Direct transfer of extended groups from synthetic cofactors by DNA methyltransferases. Nature Chemical Biology, 2006, 2, 31-32.	8.0	209
67	Synthesis of S-adenosyl-L-methionine analogs and their use for sequence-specific transalkylation of DNA by methyltransferases. Nature Protocols, 2006, 1, 1879-1886.	12.0	86
68	Time-resolved fluorescence of 2-aminopurine as a probe of base flipping in M.Hhal-DNA complexes. Nucleic Acids Research, 2005, 33, 6953-6960.	14.5	85
69	Processive Methylation of Hemimethylated CpG Sites by Mouse Dnmt1 DNA Methyltransferase. Journal of Biological Chemistry, 2005, 280, 64-72.	3.4	165
70	Probing a rate-limiting step by mutational perturbation of AdoMet binding in the Hhal methyltransferase. Nucleic Acids Research, 2005, 33, 307-315.	14.5	18
71	Hhal DNA Methyltransferase Uses the Protruding Gln237 for Active Flipping of Its Target Cytosine. Structure, 2004, 12, 1047-1055.	3.3	36
72	Solubility engineering of the Hhal methyltransferase. Protein Engineering, Design and Selection, 2003, 16, 295-301.	2.1	21

#	Article	IF	CITATIONS
73	Circular permutation of DNA cytosine-N4 methyltransferases: in vivo coexistence in the BcnI system and in vitro probing by hybrid formation. Nucleic Acids Research, 2002, 30, 1547-1557.	14.5	11
74	N4,5-dimethylcytosine, a novel hypermodified base in DNA. Nucleic Acids Symposium Series, 2002, 2, 73-74.	0.3	6
75	The Mechanism of DNA Cytosine-5 Methylation. Journal of Biological Chemistry, 2001, 276, 20924-20934.	3.4	110
76	Functional Roles of the Conserved Threonine 250 in the Target Recognition Domain of Hhal DNA Methyltransferase. Journal of Biological Chemistry, 2000, 275, 38722-38730.	3.4	66
77	Affinity photo-crosslinking study of the DNA base flipping pathway by Hhal methyltransferase. Nucleic Acids Symposium Series, 2000, 44, 271-272.	0.3	2
78	Contributory presentations/posters. Journal of Biosciences, 1999, 24, 33-198.	1.1	0
79	Bisulfite Sequencing Protocol Displays both 5-Methylcytosine and N4-Methylcytosine. Analytical Biochemistry, 1999, 271, 116-119.	2.4	39
80	Dynamic modes of the flipped-out cytosine during Hhal methyltransferase-DNA interactions in solution. EMBO Journal, 1998, 17, 317-324.	7.8	108
81	2-Aminopurine as a fluorescent probe for DNA base flipping by methyltransferases. Nucleic Acids Research, 1998, 26, 1076-1083.	14.5	193
82	Chemical display of thymine residues flipped out by DNA methyltransferases. Nucleic Acids Research, 1998, 26, 3473-3479.	14.5	37
83	A pair of single-strand and double-strand DNA cytosine-N4 methyltransferases from Bacillus centrosporus. Biological Chemistry, 1998, 379, 569-71.	2.5	10
84	Enzymatic C5-Cytosine Methylation of DNA: Mechanistic Implications of New Crystal Structures forHhal Methyltransferase-DNA-AdoHcy Complexes. Journal of Molecular Biology, 1996, 261, 634-645.	4.2	162
85	MHhal binds tightly to substrates containing mismatches at the target base. Nucleic Acids Research, 1995, 23, 1388-1395.	14.5	162
86	Disruption of the target G-C base-pair by the Hhal methyltransferase. Gene, 1995, 157, 163-164.	2.2	14
87	Sequence similarity among type-II restriction endonucleases, related by their recognized 6-bp target and tetranucleotide-overhang cleavage. Gene, 1995, 157, 311-314.	2.2	19
88	Hhal methyltransferase flips its target base out of the DNA helix. Cell, 1994, 76, 357-369.	28.9	988
89	The DNA (cytosine-5) methyltransferases. Nucleic Acids Research, 1994, 22, 1-10.	14.5	444
90	Crystal Structure of the Hhal DNA Methyltransferase. Cold Spring Harbor Symposia on Quantitative Biology, 1993, 58, 331-338.	1.1	32

#	Article	IF	CITATIONS
91	Purification and properties of theEco57lrestriction endonuclease and methylas—prototypes of a new class (type IV). Nucleic Acids Research, 1992, 20, 6043-6049.	14.5	75
92	Alw26l,Eco31l andEsp3l-type Ils methyltransferases modifying cytosine and adenine in complementary strands of the target DNA. Nucleic Acids Research, 1992, 20, 4981-4985.	14.5	27
93	Cloning and sequence analysis of the genes coding for Eco57l type IV restriction-modification enzymes. Nucleic Acids Research, 1992, 20, 6051-6056.	14.5	56
94	M.Smal is an N4-methylcytosine specific DNA-methylase. Nucleic Acids Research, 1990, 18, 6607-6609.	14.5	15
95	Sequence motifs characteristic of DNA[cytosine-N4]methyltransferases: similarity to adenine and cytosine-C5 DNA-methylases. Nucleic Acids Research, 1989, 17, 9823-9832.	14.5	160
96	Restriction endonucleases of a new type. Gene, 1988, 74, 89-91.	2.2	28
97	Synthesis and physical characterization of DNA fragments containing N4-methylcytosine and 5-methylcytosine. Nucleic Acids Research, 1987, 15, 8467-8478.	14.5	27
98	Cleavage of methylated CCCGGG sequences containing either N4-methylcytosine or 5-methytcytosine with Mspl, Hpall, Smal, Xmal and Cfr9I restriction endonudeases. Nucleic Acids Research, 1987, 15, 7091-7102.	14.5	72
99	Interaction of Alul, Cfr6I and Pvull restriction-modification enzymes with substrates containing either N4-methylcytosine or 5-methylcytosine. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1987, 909, 201-207.	2.4	43
100	Analysis of products of DNA modification by methylases: A procedure for the determination of 5- and N4-methylcytosines in DNA. Analytical Biochemistry, 1985, 148, 194-198.	2.4	21
101	Investigation of restriction-modification enzymes fromM. variansRFL19 with a new type of specificity toward modification of substrate. Nucleic Acids Research, 1985, 13, 5727-5748.	14.5	71
102	Characterization of restriction-modification enzymes Cfr13 I fromCitrobacter freundiiRFL13. FEBS Letters, 1985, 182, 509-513.	2.8	12
103	Cytosine modification in DNA by Bcn I methylase yields N 4 -methylcytosine. FEBS Letters, 1983, 161, 131-134.	2.8	101