Rebecca E Irwin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3063029/publications.pdf

Version: 2024-02-01

125 papers

8,282 citations

45 h-index 85 g-index

129 all docs 129 docs citations 129 times ranked 6062 citing authors

#	Article	IF	CITATIONS
1	Direct and ecological costs of resistance to herbivory. Trends in Ecology and Evolution, 2002, 17, 278-285.	8.7	765
2	Ecological and Evolutionary Consequences of Multispecies Plant-Animal Interactions. Annual Review of Ecology, Evolution, and Systematics, 2004, 35, 435-466.	8.3	456
3	Florivory: the intersection of pollination and herbivory. Ecology Letters, 2006, 9, 1351-1365.	6.4	357
4	Correlations among traits associated with herbivore resistance and pollination: implications for pollination and nectar robbing in a distylous plant. American Journal of Botany, 2006, 93, 64-72.	1.7	345
5	Nectar Robbing: Ecological and Evolutionary Perspectives. Annual Review of Ecology, Evolution, and Systematics, 2010, 41, 271-292.	8.3	275
6	THE ROLE OF HERBIVORES IN THE MAINTENANCE OF A FLOWER COLOR POLYMORPHISM IN WILD RADISH. Ecology, 2003, 84, 1733-1743.	3.2	200
7	TEMPORAL AND SPATIAL VARIATION IN POLLINATION OF A MONTANE HERB: A SEVEN-YEAR STUDY. Ecology, 2005, 86, 2106-2116.	3.2	191
8	Secondary metabolites in floral nectar reduce parasite infections in bumblebees. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142471.	2.6	189
9	The impact of floral larceny on individuals, populations, and communities. Oecologia, 2001, 129, 161-168.	2.0	180
10	THE DUAL ROLE OF FLORAL TRAITS: POLLINATOR ATTRACTION AND PLANT DEFENSE. Ecology, 2004, 85, 1503-1511.	3.2	176
11	Direct and indirect effects of pollinators and seed predators to selection on plant and floral traits. Oikos, 2004, 104, 15-26.	2.7	175
12	Ecology and evolution of plant–pollinator interactions. Annals of Botany, 2009, 103, 1355-1363.	2.9	172
13	Arranging the bouquet of disease: floral traits and the transmission of plant and animal pathogens. Ecology Letters, 2014, 17, 624-636.	6.4	159
14	ECOLOGICAL COSTS AND BENEFITS OF DEFENSES IN NECTAR. Ecology, 2005, 86, 2968-2978.	3.2	151
15	Linking economic activities to the distribution of exotic plants. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17725-17730.	7.1	141
16	Nectar robbing in Ipomopsis aggregata  : effects on pollinator behavior and plant fitness. Oecologia, 1998, 116, 519-527.	2.0	137
17	Chemistry of floral rewards: intra―and interspecific variability of nectar and pollen secondary metabolites across taxa. Ecological Monographs, 2019, 89, e01335.	5.4	137
18	Interannual bumble bee abundance is driven by indirect climate effects on floral resource phenology. Ecology Letters, 2017, 20, 1507-1515.	6.4	132

#	Article	IF	CITATIONS
19	Linking pollinator visitation rate and pollen receipt. American Journal of Botany, 2003, 90, 1612-1618.	1.7	125
20	Comparison of Pollen Transfer Dynamics by Multiple Floral Visitors: Experiments with Pollen and Fluorescent Dye. Annals of Botany, 2006, 97, 141-150.	2.9	123
21	NECTAR-ROBBING BUMBLE BEES REDUCE THE FITNESS OFIPOMOPSIS AGGREGATA(POLEMONIACEAE). Ecology, 1999, 80, 1703-1712.	3.2	106
22	Variation in nectar robbing over time, space, and species. Oecologia, 2002, 133, 525-533.	2.0	102
23	The effects of nutrient addition on floral characters and pollination in two subalpine plants, Ipomopsis aggregata and Linum lewisii. Plant Ecology, 2009, 203, 83-98.	1.6	98
24	Beyond biomass: measuring the effects of communityâ€level nitrogen enrichment on floral traits, pollinator visitation and plant reproduction. Journal of Ecology, 2010, 98, 705-717.	4.0	95
25	Phenological change in a spring ephemeral: implications for pollination and plant reproduction. Global Change Biology, 2016, 22, 1779-1793.	9.5	94
26	Yeasts in nectar enhance male fitness in a montane perennial herb. Ecology, 2014, 95, 1792-1798.	3.2	90
27	The Consequences of Direct versus Indirect Species Interactions to Selection on Traits: Pollination and Nectar Robbing in Ipomopsis aggregata. American Naturalist, 2006, 167, 315-328.	2.1	87
28	Consequences of a nectar yeast for pollinator preference and performance. Functional Ecology, 2017, 31, 613-621.	3.6	86
29	The ecology of insect–yeast relationships and its relevance to human industry. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172733.	2.6	86
30	Medicinal value of sunflower pollen against bee pathogens. Scientific Reports, 2018, 8, 14394.	3.3	86
31	Bee pathogen transmission dynamics: deposition, persistence and acquisition on flowers. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190603.	2.6	84
32	Secondary Compounds in Floral Rewards of Toxic Rangeland Plants: Impacts on Pollinators. Journal of Agricultural and Food Chemistry, 2014, 62, 7335-7344.	5.2	81
33	The effect of repeated, lethal sampling on wild bee abundance and diversity. Methods in Ecology and Evolution, 2015, 6, 1044-1054.	5.2	79
34	Landscape predictors of pathogen prevalence and range contractions in US bumblebees. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20172181.	2.6	70
35	Nectar and Pollen Phytochemicals Stimulate Honey Bee (Hymenoptera: Apidae) Immunity to Viral Infection. Journal of Economic Entomology, 2017, 110, 1959-1972.	1.8	69
36	Disease where you dine: plant species and floral traits associated with pathogen transmission in bumble bees. Ecology, 2018, 99, 2535-2545.	3.2	68

#	Article	IF	Citations
37	The importance of interannual variation and bottom–up nitrogen enrichment for plant–pollinator networks. Oikos, 2009, 118, 1816-1829.	2.7	66
38	CONSEQUENCES OF NECTAR ROBBING FOR REALIZED MALE FUNCTION IN A HUMMINGBIRD-POLLINATED PLANT. Ecology, 2000, 81, 2637-2643.	3.2	65
39	Predicting the effects of nectar robbing on plant reproduction: implications of pollen limitation and plant mating system. American Journal of Botany, 2007, 94, 1935-1943.	1.7	65
40	Species-specific diagnostics of Apis mellifera trypanosomatids: A nine-year survey (2007–2015) for trypanosomatids and microsporidians in Serbian honey bees. Journal of Invertebrate Pathology, 2016, 139, 6-11.	3.2	65
41	Nectar chemistry mediates the behavior of parasitized bees: consequences for plant fitness. Ecology, 2016, 97, 325-337.	3.2	65
42	Norditerpene alkaloid concentrations in tissues and floral rewards of larkspurs and impacts on pollinators. Biochemical Systematics and Ecology, 2013, 48, 123-131.	1.3	61
43	Hummingbird avoidance of nectar-robbed plants: spatial location or visual cues. Oikos, 2000, 91, 499-506.	2.7	59
44	Bumble bee parasite strains vary in resistance to phytochemicals. Scientific Reports, 2016, 6, 37087.	3.3	56
45	Bee phenology is predicted by climatic variation and functional traits. Ecology Letters, 2020, 23, 1589-1598.	6.4	55
46	Towards a U.S. national program for monitoring native bees. Biological Conservation, 2020, 252, 108821.	4.1	54
47	Effects of flowering plant density on pollinator visitation, pollen receipt, and seed production in <i>Delphinium barbeyi</i> (Ranunculaceae). American Journal of Botany, 2009, 96, 912-919.	1.7	51
48	Synergistic effects of floral phytochemicals against a bumbleÂbee parasite. Ecology and Evolution, 2017, 7, 1836-1849.	1.9	49
49	Morphological variation and female reproductive success in two sympatric Trillium species: evidence for phenotypic selection in Trillium erectum and Trillium grandiflorum (Liliaceae). American Journal of Botany, 2000, 87, 205-214.	1.7	48
50	Doseâ€dependent effects of nectar alkaloids in a montane plant–pollinator community. Journal of Ecology, 2013, 101, 1604-1612.	4.0	45
51	Nectar Yeasts in the Tall Larkspur Delphinium barbeyi (Ranunculaceae) and Effects on Components of Pollinator Foraging Behavior. PLoS ONE, 2014, 9, e108214.	2.5	44
52	IMPACT OF NECTAR ROBBING ON ESTIMATES OF POLLEN FLOW: CONCEPTUAL PREDICTIONS AND EMPIRICAL OUTCOMES. Ecology, 2003, 84, 485-495.	3.2	43
53	Nectar alkaloids decrease pollination and female reproduction in a native plant. Oecologia, 2012, 168, 1033-1041.	2.0	43
54	Direct and indirect effects of episodic frost on plant growth and reproduction in subalpine wildflowers. Global Change Biology, 2018, 24, 848-857.	9.5	43

#	Article	IF	CITATIONS
55	Winters are changing: snow effects on Arctic and alpine tundra ecosystems. Arctic Science, 2022, 8, 572-608.	2.3	43
56	Pollen from multiple sunflower cultivars and species reduces a common bumblebee gut pathogen. Royal Society Open Science, 2019, 6, 190279.	2.4	42
57	Possible Synergistic Effects of Thymol and Nicotine against Crithidia bombi Parasitism in Bumble Bees. PLoS ONE, 2015, 10, e0144668.	2.5	42
58	Crop Domestication Alters Floral Reward Chemistry With Potential Consequences for Pollinator Health. Frontiers in Plant Science, 2018, 9, 1357.	3.6	40
59	Secondary metabolites from nectar and pollen: a resource for ecological and evolutionary studies. Ecology, 2019, 100, e02621.	3.2	40
60	NECTAR SECONDARY COMPOUNDS AFFECT SELF-POLLEN TRANSFER: IMPLICATIONS FOR FEMALE AND MALE REPRODUCTION. Ecology, 2008, 89, 2207-2217.	3.2	39
61	Effects of Suburbanization on Forest Bee Communities. Environmental Entomology, 2014, 43, 253-262.	1.4	38
62	Nectar-Robbing Bumble Bees Reduce the Fitness of Ipomopsis aggregata (Polemoniaceae). Ecology, 1999, 80, 1703.	3.2	37
63	Food Limitation Affects Parasite Load and Survival of <i>Bombus impatiens</i> (Hymenoptera: Apidae) Infected With <i>Crithidia</i> (Trypanosomatida: Trypanosomatidae). Environmental Entomology, 2016, 45, 1212-1219.	1.4	37
64	Flowering plant composition shapes pathogen infection intensity and reproduction in bumble bee colonies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11559-11565.	7.1	37
65	Nectar Sugar Limits Larval Growth of Solitary Bees (Hymenoptera: Megachilidae). Environmental Entomology, 2009, 38, 1293-1300.	1.4	35
66	Cross-infectivity of honey and bumble bee-associated parasites across three bee families. Parasitology, 2020, 147, 1290-1304.	1.5	35
67	The nectar alkaloid, gelsemine, does not affect offspring performance of a native solitary bee, <i>Osmia lignaria</i> (Megachilidae). Ecological Entomology, 2008, 33, 298-304.	2.2	29
68	Floral traits affecting the transmission of beneficial and pathogenic pollinator-associated microbes. Current Opinion in Insect Science, 2021, 44, 1-7.	4.4	29
69	The behavioral ecology of nectar robbing: why be tactic constant?. Current Opinion in Insect Science, 2017, 21, 14-18.	4.4	27
70	The individual and combined effects of snowmelt timing and frost exposure on the reproductive success of montane forbs. Journal of Ecology, 2019, 107, 1970-1981.	4.0	26
71	Variable effects of nicotine, anabasine, and their interactions on parasitized bumble bees. F1000Research, 2015, 4, 880.	1.6	26
72	Phenotypic selection on floral traits in an urban landscape. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181239.	2.6	25

#	Article	IF	Citations
73	Field and allozyme studies investigating optimal mating success in two sympatric spring-ephemeral plants, Trillium erectum and T. grandiflorum. Heredity, 2001, 87, 178-189.	2.6	24
74	Selective seed abortion induced by nectar robbing in the selfing plant <i>Comastoma pulmonarium</i> . New Phytologist, 2011, 192, 249-255.	7.3	24
75	Testing Dose-Dependent Effects of the Nectar Alkaloid Anabasine on Trypanosome Parasite Loads in Adult Bumble Bees. PLoS ONE, 2015, 10, e0142496.	2.5	24
76	Additive effects of herbivory, nectar robbing and seed predation on male and female fitness estimates of the host plant Ipomopsis aggregata. Oecologia, 2011, 166, 681-692.	2.0	23
77	Effects of abiotic factors and species interactions on estimates of male plant function: a metaâ€analysis. Ecology Letters, 2013, 16, 399-408.	6.4	23
78	Nectar yeasts in Delphinium nuttallianum (Ranunculaceae) and their effects on nectar quality. Fungal Ecology, 2015, 18, 100-106.	1.6	23
79	Effects of florivory on plantâ€pollinator interactions: Implications for male and female components of plant reproduction. American Journal of Botany, 2016, 103, 1061-1070.	1.7	23
80	Assessing Chemical Mechanisms Underlying the Effects of Sunflower Pollen on a Gut Pathogen in Bumble Bees. Journal of Chemical Ecology, 2020, 46, 649-658.	1.8	23
81	A trade-off between the frequency and duration of bumblebee visits to flowers. Oecologia, 1998, 117, 161-168.	2.0	22
82	When resources don't rescue: flowering phenology and species interactions affect compensation to herbivory in <i>lpomopsis aggregata</i> . Oikos, 2012, 121, 1424-1434.	2.7	22
83	Plant–animal interactions in suburban environments: implications for floral evolution. Oecologia, 2014, 174, 803-815.	2.0	22
84	Quantifying direct vs. indirect effects of nectar robbers on male and female components of plant fitness. Journal of Ecology, 2015, 103, 1487-1497.	4.0	22
85	Venus Flytrap Rarely Traps Its Pollinators. American Naturalist, 2018, 191, 539-546.	2.1	22
86	Variable effects of nicotine and anabasine on parasitized bumble bees. F1000Research, 2015, 4, 880.	1.6	21
87	MECHANISMS OF TOLERANCE TO FLORAL LARCENY IN TWO WILDFLOWER SPECIES. Ecology, 2008, 89, 3093-3104.	3.2	20
88	Realized tolerance to nectar robbing: compensation to floral enemies in Ipomopsis aggregata. Annals of Botany, 2009, 103, 1425-1433.	2.9	20
89	Facilitated exploitation of pollination mutualisms: fitness consequences for plants. Journal of Ecology, 2017, 105, 188-196.	4.0	20
90	Effects of fragmentation on a distinctive coastal sage scrub bee fauna revealed through incidental captures by pitfall traps. Journal of Insect Conservation, 2015, 19, 175-179.	1.4	19

#	Article	IF	Citations
91	Resurgence of specialized shade coffee cultivation: Effects on pollination services and quality of coffee production. Agriculture, Ecosystems and Environment, 2018, 265, 567-575.	5.3	18
92	Sunflower pollen reduces a gut pathogen in worker and queen but not male bumble bees. Ecological Entomology, 2020, 45, 1318-1326.	2.2	18
93	Pollen limitation and reproduction of three plant species across a temperature gradient in western Greenland. Arctic, Antarctic, and Alpine Research, 2018, 50, .	1.1	17
94	Costs and benefits of alternative food handling tactics help explain facultative exploitation of pollination mutualisms. Ecology, 2018, 99, 1815-1824.	3.2	17
95	A comparison of coffee floral traits under two different agricultural practices. Scientific Reports, 2019, 9, 7331.	3.3	17
96	Interactions between nectar robbers and seed predators mediated by a shared host plant, Ipomopsis aggregata. Oecologia, 2008, 155, 75-84.	2.0	14
97	Volatile production by buds and corollas of two sympatric, confamilial plants, Ipomopsis aggregata and Polemonium foliosissimum. Journal of Chemical Ecology, 2002, 28, 565-578.	1.8	13
98	What you smell is more important than what you see? Natural selection on floral scent. New Phytologist, 2012, 195, 510-511.	7.3	13
99	Foraging strategy predicts foraging economy in a facultative secondary nectar robber. Oikos, 2017, 126, 1250-1257.	2.7	12
100	The costs and benefits of sunflower pollen diet on bumble bee colony disease and health. Ecosphere, 2021, 12, e03663.	2.2	12
101	Context-dependent medicinal effects of anabasine and infection-dependent toxicity in bumble bees. PLoS ONE, 2017, 12, e0183729.	2.5	11
102	Competition for nectar resources does not affect bee foraging tactic constancy. Ecological Entomology, 2020, 45, 904-909.	2.2	11
103	Preinfection Effects of Nectar Secondary Compounds on a Bumble Bee Gut Pathogen. Environmental Entomology, 2019, 48, 685-690.	1.4	10
104	Effect of timing and exposure of sunflower pollen on a common gut pathogen of bumble bees. Ecological Entomology, 2019, 44, 702-710.	2.2	9
105	Within-Colony Transmission of Microsporidian and Trypanosomatid Parasites in Honey Bee and Bumble Bee Colonies. Environmental Entomology, 2020, 49, 1393-1401.	1.4	9
106	Parasite defense mechanisms in bees: behavior, immunity, antimicrobials, and symbionts. Emerging Topics in Life Sciences, 2020, 4, 59-76.	2.6	9
107	The response of pollen-transport networks to landscape-scale climate variation. Polar Biology, 2017, 40, 2253-2263.	1.2	8
108	Why are some plant–nectar robber interactions commensalisms?. Oikos, 2018, 127, 1679-1689.	2.7	8

#	Article	IF	CITATIONS
109	Effects of shortâ€term exposure to naturally occurring thymol concentrations on transmission of a bumble bee parasite. Ecological Entomology, 2018, 43, 567-577.	2.2	8
110	Sunflower pollen induces rapid excretion in bumble bees: Implications for host-pathogen interactions. Journal of Insect Physiology, 2022, 137, 104356.	2.0	8
111	Life-history traits predict responses of wild bees to climate variation. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212697.	2.6	8
112	Consuming sunflower pollen reduced pathogen infection but did not alter measures of immunity in bumblebees. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210160.	4.0	8
113	Evolutionary Ecology: When Pollinators Are Also Herbivores. Current Biology, 2010, 20, R100-R101.	3.9	7
114	Pollen and vegetative secondary chemistry of three pollenâ€rewarding lupines. American Journal of Botany, 2019, 106, 643-655.	1.7	7
115	Floral shape predicts bee–parasite transmission potential. Ecology, 2022, 103, e3730.	3.2	7
116	Colony-Level Effects of Amygdalin on Honeybees and Their Microbes. Insects, 2020, 11, 783.	2.2	6
117	The Sensory and Cognitive Ecology of Nectar Robbing. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	6
118	Sunflower pollen reduces a gut pathogen in the model bee species, <i>Bombus impatiens</i> , but has weaker effects in three wild congeners. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20211909.	2.6	6
119	The role of trait-mediated indirect interactions for multispecies plant–animal mutualisms. , 2012, , 257-277.		3
120	Consequences of secondary nectar robbing for male components of plant reproduction. American Journal of Botany, 2018, 105, 943-949.	1.7	3
121	Pollination Ecology and Morphology of Venus Flytrap in Sites of Varying Time Since Last Fire. Annals of the Entomological Society of America, 2019, 112, 141-149.	2.5	3
122	Bumble bees are constant to nectar-robbing behaviour despite low switching costs. Animal Behaviour, 2020, 170, 177-188.	1.9	3
123	Nectar addition changes pollinator behavior but not plant reproduction in pollenâ€rewarding <i>Lupinus argenteus</i> . American Journal of Botany, 2021, 108, 402-410.	1.7	3
124	Effects of an alternative host on the prevalence and intensity of infection of a bumble bee parasite. Parasitology, 2022, 149, 562-567.	1.5	1
125	Comparative impacts of longâ€term trends in snowmelt and species interactions on plant population dynamics. Journal of Ecology, 2022, 110, 1102-1112.	4.0	0