List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3062917/publications.pdf Version: 2024-02-01



ΕΜΙΙΙΟ ΡΑΦΟΟ

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Mixed component metal-organic frameworks: Heterogeneity and complexity at the service of application performances. Coordination Chemistry Reviews, 2022, 451, 214273.                                                              | 18.8 | 70        |
| 2  | Enhanced Sieving of C2â€Hydrocarbon from Methane by Fluoroâ€Functionalization of Inâ€MOF with Robust<br>Stability. Chemistry - an Asian Journal, 2022, 17, .                                                                       | 3.3  | 2         |
| 3  | MOF‣tabilized Perfluorinated Palladium Cages Catalyze the Additiveâ€Free Aerobic Oxidation of<br>Aliphatic Alcohols to Acids. Chemistry - A European Journal, 2022, 28, .                                                          | 3.3  | 6         |
| 4  | Epoxidation vs. dehydrogenation of allylic alcohols: Heterogenization of the VO(acac)2 catalyst in a metal-organic framework. Chemical Communications, 2022, , .                                                                   | 4.1  | 2         |
| 5  | Multivariate Metal–Organic Framework/Single-Walled Carbon Nanotube Buckypaper for Selective<br>Lead Decontamination. ACS Applied Nano Materials, 2022, 5, 5223-5233.                                                               | 5.0  | 20        |
| 6  | Metalâ€Organic Frameworks as Unique Platforms to Gain Insight of σâ€Hole Interactions for the Removal of Organic Dyes from Aquatic Ecosystems. Chemistry - A European Journal, 2022, , .                                           | 3.3  | 4         |
| 7  | Click amidations, esterifications and one–pot reactions catalyzed by Cu salts and multimetal–organic<br>frameworks (M–MOFs). Molecular Catalysis, 2022, 522, 112228.                                                               | 2.0  | 0         |
| 8  | Slow magnetic relaxation in a trigonal-planar mononuclear Fe( <scp>ii</scp> ) complex. Dalton<br>Transactions, 2022, 51, 8266-8272.                                                                                                | 3.3  | 3         |
| 9  | Crystallographic Visualization of a Double Water Molecule Addition on a Pt 1 â€MOF during the<br>Lowâ€ŧemperature Waterâ€Gas Shift Reaction. ChemCatChem, 2021, 13, 1195-1200.                                                     | 3.7  | 7         |
| 10 | Bioinspired Metalâ€Organic Frameworks in Mixed Matrix Membranes for Efficient Static/Dynamic<br>Removal of Mercury from Water. Advanced Functional Materials, 2021, 31, 2008499.                                                   | 14.9 | 43        |
| 11 | Synthesis of a rod-based porous coordination polymer from a nucleotide as a sequential chiral inductor. Journal of Coordination Chemistry, 2021, 74, 200-215.                                                                      | 2.2  | 1         |
| 12 | Reverse osmosis and nanofiltration membranes for highly efficient PFASs removal: overview, challenges and future perspectives. Dalton Transactions, 2021, 50, 5398-5410.                                                           | 3.3  | 57        |
| 13 | Soluble/MOF-Supported Palladium Single Atoms Catalyze the Ligand-, Additive-, and Solvent-Free<br>Aerobic Oxidation of Benzyl Alcohols to Benzoic Acids. Journal of the American Chemical Society,<br>2021, 143, 2581-2592.        | 13.7 | 74        |
| 14 | Highly Efficient Removal of Neonicotinoid Insecticides by Thioether-Based (Multivariate)<br>Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 28424-28432.                                                   | 8.0  | 29        |
| 15 | Photodegradation of Brilliant Green Dye by a Zinc bioMOF and Crystallographic Visualization of Resulting CO2. Molecules, 2021, 26, 4098.                                                                                           | 3.8  | 5         |
| 16 | Synthesis and Enhanced Capture Properties of a New BioMOF@SWCNTâ€BP: Recovery of the Endangered<br>Rareâ€Earth Elements from Aqueous Systems. Advanced Materials Interfaces, 2021, 8, 2100730.                                     | 3.7  | 13        |
| 17 | Synthesis and Enhanced Capture Properties of a New BioMOF@SWCNTâ€BP: Recovery of the Endangered<br>Rareâ€Earth Elements from Aqueous Systems (Adv. Mater. Interfaces 16/2021). Advanced Materials<br>Interfaces, 2021, 8, 2170089. | 3.7  | 0         |
| 18 | A Biocompatible Aspartic-Decorated Metal–Organic Framework with Tubular Motif Degradable under<br>Physiological Conditions. Inorganic Chemistry, 2021, 60, 14221-14229.                                                            | 4.0  | 3         |

| #  | Article                                                                                                                                                                                                                        | IF              | CITATIONS    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 19 | Towards Iron-Titanium Oxide Nanostructures from Ecuadorian Black Mineral Sands. Minerals (Basel,) Tj ETQq1 1                                                                                                                   | 0.784314<br>2.0 | rg&T /Overic |
| 20 | Switching of easy-axis to easy-plane anisotropy in cobalt( <scp>ii</scp> ) complexes. Inorganic Chemistry Frontiers, 2021, 8, 5158-5168.                                                                                       | 6.0             | 12           |
| 21 | Modulating magnetic dynamics through tailoring the terminal ligands in Dy <sub>2</sub><br>single-molecule magnets. Dalton Transactions, 2020, 49, 808-816.                                                                     | 3.3             | 16           |
| 22 | Data on phase and chemical compositions of black sands from "El Ostional―beach situated in<br>Mompiche, Ecuador. Data in Brief, 2020, 32, 106214.                                                                              | 1.0             | 8            |
| 23 | Cyclic metal(oid) clusters control platinum-catalysed hydrosilylation reactions: from soluble to zeolite and MOF catalysts. Chemical Science, 2020, 11, 8113-8124.                                                             | 7.4             | 20           |
| 24 | A series of lanthanide( <scp>iii</scp> ) metal–organic frameworks derived from a pyridyl-dicarboxylate<br>ligand: single-molecule magnet behaviour and luminescence properties. Dalton Transactions, 2020, 49,<br>14123-14132. | 3.3             | 22           |
| 25 | Hydrolase–like catalysis and structural resolution of natural products by a metal–organic<br>framework. Nature Communications, 2020, 11, 3080.                                                                                 | 12.8            | 33           |
| 26 | Bio-metal-organic frameworks for molecular recognition and sorbent extractionÂof hydrophilic<br>vitamins followed byÂtheir determination usingÂHPLC-UV. Mikrochimica Acta, 2020, 187, 201.                                     | 5.0             | 14           |
| 27 | Metal–Organic Frameworks as Chemical Nanoreactors: Synthesis and Stabilization of Catalytically<br>Active Metal Species in Confined Spaces. Accounts of Chemical Research, 2020, 53, 520-531.                                  | 15.6            | 81           |
| 28 | lsolating reactive metal-based species in Metal–Organic Frameworks – viable strategies and opportunities. Chemical Science, 2020, 11, 4031-4050.                                                                               | 7.4             | 59           |
| 29 | Gas Transport in Mixed Matrix Membranes: Two Methods for Time Lag Determination. Computation, 2020, 8, 28.                                                                                                                     | 2.0             | 14           |
| 30 | Glassy PEEK-WC vs. Rubbery Pebax®1657 Polymers: Effect on the Gas Transport in CuNi-MOF Based Mixed<br>Matrix Membranes. Applied Sciences (Switzerland), 2020, 10, 1310.                                                       | 2.5             | 12           |
| 31 | Multivariate Metal–Organic Frameworks for the Simultaneous Capture of Organic and Inorganic<br>Contaminants from Water. Journal of the American Chemical Society, 2019, 141, 13601-13609.                                      | 13.7            | 120          |
| 32 | Efficient Gas Separation and Transport Mechanism in Rare Hemilabile Metal–Organic Framework.<br>Chemistry of Materials, 2019, 31, 5856-5866.                                                                                   | 6.7             | 18           |
| 33 | Magnetic order in a Cull–Dylll oxamato-based two-dimensional coordination polymer. Comptes Rendus<br>Chimie, 2019, 22, 466-475.                                                                                                | 0.5             | 4            |
| 34 | Solvent-induced single-crystal-to-single-crystal transformation and tunable magnetic properties of<br>1D azido-Cu( <scp>ii</scp> ) chains with a carboxylate bridge. Dalton Transactions, 2019, 48, 11268-11277.               | 3.3             | 13           |
| 35 | Metal–Organic Frameworks as Playgrounds for Reticulate Single-Molecule Magnets. Inorganic<br>Chemistry, 2019, 58, 14498-14506.                                                                                                 | 4.0             | 23           |
| 36 | Synthesis of a chiral rod-like metal–organic framework from a preformed amino acid-based<br>hexanuclear wheel. Journal of Coordination Chemistry, 2019, 72, 1204-1221.                                                         | 2.2             | 2            |

| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A Metalloligand Approach for the Self-Assembly of a Magnetic Two-Dimensional Grid-of-Grids. Crystal<br>Growth and Design, 2019, 19, 3905-3912.                                                                                                               | 3.0  | 9         |
| 38 | Self-Assembly of Catalytically Active Supramolecular Coordination Compounds within<br>Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 10350-10360.                                                                            | 13.7 | 50        |
| 39 | Direct Visualization of Pyrrole Reactivity upon Confinement within a Cyclodextrin Metal–Organic<br>Framework. Angewandte Chemie, 2019, 131, 9277-9281.                                                                                                       | 2.0  | 5         |
| 40 | Direct Visualization of Pyrrole Reactivity upon Confinement within a Cyclodextrin Metal–Organic<br>Framework. Angewandte Chemie - International Edition, 2019, 58, 9179-9183.                                                                                | 13.8 | 16        |
| 41 | Modulation of the magnetic anisotropy of octahedral cobalt( <scp>ii</scp> ) single-ion magnets by fine-tuning the axial coordination microenvironment. Inorganic Chemistry Frontiers, 2019, 6, 848-856.                                                      | 6.0  | 50        |
| 42 | Capping Nâ€Donor Ligands Modulate the Magnetic Dynamics of Dy <sup>III</sup> βâ€Diketonate Singleâ€lon<br>Magnets with <i>D</i> <sub>4<i>d</i></sub> Symmetry. Chemistry - A European Journal, 2019, 25,<br>3884-3892.                                       | 3.3  | 32        |
| 43 | Crystallographic snapshots of host–guest interactions in drugs@metal–organic frameworks:<br>towards mimicking molecular recognition processes. Materials Horizons, 2018, 5, 683-690.                                                                         | 12.2 | 64        |
| 44 | Synthesis of Densely Packaged, Ultrasmall Pt <sup>0</sup> <sub>2</sub> Clusters within a<br>Thioetherâ€Functionalized MOF: Catalytic Activity in Industrial Reactions at Low Temperature.<br>Angewandte Chemie, 2018, 130, 6294-6299.                        | 2.0  | 22        |
| 45 | Synthesis of Densely Packaged, Ultrasmall Pt <sup>0</sup> <sub>2</sub> Clusters within a<br>Thioetherâ€Functionalized MOF: Catalytic Activity in Industrial Reactions at Low Temperature.<br>Angewandte Chemie - International Edition, 2018, 57, 6186-6191. | 13.8 | 115       |
| 46 | Metal–organic framework technologies for water remediation: towards a sustainable ecosystem.<br>Journal of Materials Chemistry A, 2018, 6, 4912-4947.                                                                                                        | 10.3 | 369       |
| 47 | Design of Magnetic Coordination Polymers Built from Polyoxalamide Ligands: A Thirty Year Story.<br>European Journal of Inorganic Chemistry, 2018, 2018, 228-247.                                                                                             | 2.0  | 44        |
| 48 | Efficient Capture of Organic Dyes and Crystallographic Snapshots by a Highly Crystalline<br>Amino-Acid-Derived Metal-Organic Framework. Chemistry - A European Journal, 2018, 24, 17615-17615.                                                               | 3.3  | 1         |
| 49 | Concise Chemistry Modulation of the SMM Behavior within a Family of Mononuclear Dy(III)<br>Complexes. Inorganic Chemistry, 2018, 57, 14843-14851.                                                                                                            | 4.0  | 48        |
| 50 | Confined Pt <sub>1</sub> <sup>1+</sup> Water Clusters in a MOF Catalyze the Lowâ€Temperature<br>Water–Gas Shift Reaction with both CO <sub>2</sub> Oxygen Atoms Coming from Water. Angewandte<br>Chemie - International Edition, 2018, 57, 17094-17099.      | 13.8 | 54        |
| 51 | Confined Pt <sub>1</sub> <sup>1+</sup> Water Clusters in a MOF Catalyze the Lowâ€Temperature<br>Water–Gas Shift Reaction with both CO <sub>2</sub> Oxygen Atoms Coming from Water. Angewandte<br>Chemie, 2018, 130, 17340-17345.                             | 2.0  | 4         |
| 52 | Stabilized Ru[(H <sub>2</sub> 0) <sub>6</sub> ] <sup>3+</sup> in Confined Spaces (MOFs and Zeolites)<br>Catalyzes the Imination of Primary Alcohols under Atmospheric Conditions with Wide Scope. ACS<br>Catalysis, 2018, 8, 10401-10406.                    | 11.2 | 31        |
| 53 | Toward Engineering Chiral Rodlike Metal–Organic Frameworks with Rare Topologies. Inorganic<br>Chemistry, 2018, 57, 12869-12875.                                                                                                                              | 4.0  | 13        |
| 54 | Lanthanide Discrimination with Hydroxyl-Decorated Flexible Metal–Organic Frameworks. Inorganic<br>Chemistry, 2018, 57, 13895-13900.                                                                                                                          | 4.0  | 24        |

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Highly efficient temperature-dependent chiral separation with a nucleotide-based coordination polymer. Chemical Communications, 2018, 54, 6356-6359.                                               | 4.1  | 19        |
| 56 | Isolated Fe(III)–O Sites Catalyze the Hydrogenation of Acetylene in Ethylene Flows under Front-End<br>Industrial Conditions. Journal of the American Chemical Society, 2018, 140, 8827-8832.       | 13.7 | 74        |
| 57 | Efficient Capture of Organic Dyes and Crystallographic Snapshots by a Highly Crystalline<br>Aminoâ€Acidâ€Derived Metal–Organic Framework. Chemistry - A European Journal, 2018, 24, 17712-17718.   | 3.3  | 41        |
| 58 | A post-synthetic approach triggers selective and reversible sulphur dioxide adsorption on a metal–organic framework. Chemical Communications, 2018, 54, 9063-9066.                                 | 4.1  | 22        |
| 59 | Cytosine Nucleobase Ligand: A Suitable Choice for Modulating Magnetic Anisotropy in Tetrahedrally<br>Coordinated Mononuclear Co <sup>II</sup> Compounds. Inorganic Chemistry, 2017, 56, 1857-1864. | 4.0  | 34        |
| 60 | Molecular magnetism, quo vadis? A historical perspective from a coordination chemist viewpointâ~†.<br>Coordination Chemistry Reviews, 2017, 339, 17-103.                                           | 18.8 | 279       |
| 61 | Reversible solvatomagnetic switching in a single-ion magnet from an entatic state. Chemical Science, 2017, 8, 3694-3702.                                                                           | 7.4  | 67        |
| 62 | Tuning the selectivity of light hydrocarbons in natural gas in a family of isoreticular MOFs. Journal of Materials Chemistry A, 2017, 5, 11032-11039.                                              | 10.3 | 36        |
| 63 | Rational Synthesis of Chiral Metal–Organic Frameworks from Preformed Rodlike Secondary Building<br>Units. Inorganic Chemistry, 2017, 56, 6551-6557.                                                | 4.0  | 27        |
| 64 | The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry. Nature Materials, 2017, 16, 760-766.                                              | 27.5 | 230       |
| 65 | A novel oxalate-based three-dimensional coordination polymer showing magnetic ordering and high proton conductivity. Dalton Transactions, 2017, 46, 15130-15137.                                   | 3.3  | 15        |
| 66 | Fine-tuning of the confined space in microporous metal–organic frameworks for efficient mercury removal. Journal of Materials Chemistry A, 2017, 5, 20120-20125.                                   | 10.3 | 56        |
| 67 | Postsynthetic Approach for the Rational Design of Chiral Ferroelectric Metal–Organic Frameworks.<br>Journal of the American Chemical Society, 2017, 139, 8098-8101.                                | 13.7 | 81        |
| 68 | Solidâ€6tate Molecular Nanomagnet Inclusion into a Magnetic Metal–Organic Framework: Interplay of<br>the Magnetic Properties. Chemistry - A European Journal, 2016, 22, 539-545.                   | 3.3  | 61        |
| 69 | Solvent-Dependent Self-Assembly of an Oxalato-Based Three-Dimensional Magnet Exhibiting a Novel<br>Architecture. Inorganic Chemistry, 2016, 55, 6845-6847.                                         | 4.0  | 13        |
| 70 | Spin-crossover complex encapsulation within a magnetic metal–organic framework. Chemical<br>Communications, 2016, 52, 7360-7363.                                                                   | 4.1  | 39        |
| 71 | Structural Studies on a New Family of Chiral BioMOFs. Crystal Growth and Design, 2016, 16, 5571-5578.                                                                                              | 3.0  | 21        |
| 72 | Selective and Efficient Removal of Mercury from Aqueous Media with the Highly Flexible Arms of a<br>BioMOF. Angewandte Chemie, 2016, 128, 11333-11338.                                             | 2.0  | 40        |

| #  | Article                                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Selective and Efficient Removal of Mercury from Aqueous Media with the Highly Flexible Arms of a BioMOF. Angewandte Chemie - International Edition, 2016, 55, 11167-11172.                                                                                                            | 13.8 | 158       |
| 74 | Selective Guest Inclusion in Oxalate-Based Iron(III) Magnetic Coordination Polymers. Inorganic Chemistry, 2016, 55, 11160-11169.                                                                                                                                                      | 4.0  | 8         |
| 75 | Selective Gold Recovery and Catalysis in a Highly Flexible Methionine-Decorated Metal–Organic<br>Framework. Journal of the American Chemical Society, 2016, 138, 7864-7867.                                                                                                           | 13.7 | 196       |
| 76 | Insights into the Dynamics of Grotthuss Mechanism in a Proton-Conducting Chiral <i>bio</i> MOF.<br>Chemistry of Materials, 2016, 28, 4608-4615.                                                                                                                                       | 6.7  | 105       |
| 77 | Guest-dependent single-ion magnet behaviour in a cobalt( <scp>ii</scp> ) metal–organic framework.<br>Chemical Science, 2016, 7, 2286-2293.                                                                                                                                            | 7.4  | 110       |
| 78 | Fieldâ€Induced Slow Magnetic Relaxation in a Mononuclear Manganese(III)–Porphyrin Complex.<br>Chemistry - A European Journal, 2015, 21, 17299-17307.                                                                                                                                  | 3.3  | 50        |
| 79 | Metallosupramolecular approach toward multifunctional magnetic devices for molecular spintronics. Coordination Chemistry Reviews, 2015, 303, 110-138.                                                                                                                                 | 18.8 | 64        |
| 80 | Homochiral self-assembly of biocoordination polymers: anion-triggered helicity and absolute configuration inversion. Chemical Science, 2015, 6, 4300-4305.                                                                                                                            | 7.4  | 29        |
| 81 | Dicopper(II) Metallacyclophanes as Multifunctional Magnetic Devices: A Joint Experimental and<br>Computational Study. Accounts of Chemical Research, 2015, 48, 510-520.                                                                                                               | 15.6 | 58        |
| 82 | Postsynthetic Improvement of the Physical Properties in a Metal–Organic Framework through a<br>Single Crystal to Single Crystal Transmetallation. Angewandte Chemie - International Edition, 2015, 54,<br>6521-6525.                                                                  | 13.8 | 98        |
| 83 | Cation Exchange in Dynamic 3D Porous Magnets: Improvement of the Physical Properties. Inorganic<br>Chemistry, 2015, 54, 10834-10840.                                                                                                                                                  | 4.0  | 20        |
| 84 | Double Interpenetration in a Chiral Three-Dimensional Magnet with a (10,3)-a Structure. Inorganic<br>Chemistry, 2015, 54, 8890-8892.                                                                                                                                                  | 4.0  | 15        |
| 85 | Oxamato-based coordination polymers: recent advances in multifunctional magnetic materials.<br>Chemical Communications, 2014, 50, 7569-7585.                                                                                                                                          | 4.1  | 103       |
| 86 | A triple-bridged azido-Cu( <scp>ii</scp> ) chain compound fine-tuned by mixed carboxylate/ethanol<br>linkers displays slow-relaxation and ferromagnetic order: synthesis, crystal structure, magnetic<br>properties and DFT calculations. Dalton Transactions, 2014, 43, 15359-15366. | 3.3  | 19        |
| 87 | High-Temperature Spin Crossover in a Mononuclear Six-Coordinate Cobalt(II) Complex. Inorganic<br>Chemistry, 2014, 53, 10009-10011.                                                                                                                                                    | 4.0  | 28        |
| 88 | S-shaped decanuclear heterometallic [Ni <sub>8</sub> Ln <sub>2</sub> ] complexes [Ln( <scp>iii</scp> ) =<br>Gd, Tb, Dy and Ho]: theoretical modeling of the magnetic properties of the gadolinium analogue.<br>Dalton Transactions, 2014, 43, 10164-10174.                            | 3.3  | 25        |
| 89 | Heterometallic Pentanuclear [Ni <sub>4</sub> Ln] (Ln <sup>III</sup> = Gd, Tb, Dy, Ho) Complexes:<br>Accidental Orthogonality Leading to Ferromagnetic Interactions. European Journal of Inorganic<br>Chemistry, 2014, 2014, 3393-3400.                                                | 2.0  | 20        |
| 90 | The oxamate route, a versatile post-functionalization for metal incorporation in MIL-101(Cr): Catalytic applications of Cu, Pd, and Au. Journal of Catalysis, 2013, 307, 295-304.                                                                                                     | 6.2  | 86        |

**EMILIO PARDO** 

| #   | Article                                                                                                                                                                                                                                                   | IF                 | CITATIONS     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|
| 91  | Enantioselective self-assembly of antiferromagnetic hexacopper(ii) wheels with chiral amino acid oxamates. Chemical Communications, 2013, 49, 5942.                                                                                                       | 4.1                | 24            |
| 92  | The odd association of a C3h trisamidinium cation and tosylate anion with a series of linear oxalate-bridged trinuclear heterometallic complexes. Dalton Transactions, 2013, 42, 4704.                                                                    | 3.3                | 12            |
| 93  | A hexaicosametallic copper(ii) phosphonate. Dalton Transactions, 2013, 42, 8192.                                                                                                                                                                          | 3.3                | 22            |
| 94  | Synthesis, Structure, and Magnetic Properties of a Family of Heterometallic Pentanuclear [Co4Ln] (Ln) Tj ETQqO                                                                                                                                            | 0 0 rgBT /0<br>2.0 | Overlock 10 T |
| 95  | Slow Magnetic Relaxation in a Hydrogen-Bonded 2D Array of Mononuclear Dysprosium(III) Oxamates.<br>Inorganic Chemistry, 2013, 52, 4777-4779.                                                                                                              | 4.0                | 37            |
| 96  | Self-assembly of a chiral three-dimensional manganese(ii)–copper(ii) coordination polymer with a<br>double helical architecture. CrystEngComm, 2013, 15, 9312.                                                                                            | 2.6                | 17            |
| 97  | Dicopper(II) Metallacyclophanes with Electroswitchable Polymethylâ€Substituted <i>para</i> â€Phenylene<br>Spacers. Chemistry - A European Journal, 2013, 19, 12124-12137.                                                                                 | 3.3                | 25            |
| 98  | Fieldâ€Induced Hysteresis and Quantum Tunneling of the Magnetization in a Mononuclear Manganese(III)<br>Complex. Angewandte Chemie - International Edition, 2013, 52, 14075-14079.                                                                        | 13.8               | 150           |
| 99  | Antisymmetric Exchange in Triangular Tricopper(II) Complexes: Correlation among Structural,<br>Magnetic, and Electron Paramagnetic Resonance Parameters. Inorganic Chemistry, 2012, 51, 985-1001.                                                         | 4.0                | 110           |
| 100 | The Role of Order–Disorder Transitions in the Quest for Molecular Multiferroics: Structural and<br>Magnetic Neutron Studies of a Mixed Valence Iron(II)–Iron(III) Formate Framework. Journal of the<br>American Chemical Society, 2012, 134, 19772-19781. | 13.7               | 127           |
| 101 | Self-assembly, metal binding ability, and magnetic properties of dinickel(ii) and dicobalt(ii) triple mesocates. CrystEngComm, 2012, 14, 5639.                                                                                                            | 2.6                | 14            |
| 102 | Redox switching of the antiferromagnetic coupling in permethylated dicopper(ii) paracyclophanes.<br>Chemical Communications, 2012, 48, 8401.                                                                                                              | 4.1                | 22            |
| 103 | Ligand effects on the dimensionality of oxamato-bridged mixed-metal open-framework magnets.<br>Chemical Communications, 2012, 48, 3539.                                                                                                                   | 4.1                | 15            |
| 104 | Influence of the alkaline earth cations on the topology of<br>M <sup>II</sup> /Cu <sup>II</sup> mixed-metal–organic frameworks (M = Ca, Sr and Ba). CrystEngComm,<br>2012, 14, 761-764.                                                                   | 2.6                | 17            |
| 105 | Field-Induced Slow Magnetic Relaxation in a Six-Coordinate Mononuclear Cobalt(II) Complex with a Positive Anisotropy. Journal of the American Chemical Society, 2012, 134, 15704-15707.                                                                   | 13.7               | 358           |
| 106 | Highly Selective Chemical Sensing in a Luminescent Nanoporous Magnet. Advanced Materials, 2012, 24, 5625-5629.                                                                                                                                            | 21.0               | 131           |
| 107 | Topological Versatility of Oxalate-Based Bimetallic One-Dimensional (1D) Compounds Associated with<br>Ammonium Cations. Inorganic Chemistry, 2012, 51, 11582-11593.                                                                                       | 4.0                | 33            |

108Selective Gas and Vapor Sorption and Magnetic Sensing by an Isoreticular Mixed-Metalâ€"Organic13.7109108

| #   | Article                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Prussian Blue Analogues of Reduced Dimensionality. Small, 2012, 8, 2532-2540.                                                                                                                                                                                                 | 10.0 | 21        |
| 110 | Multiferroics by Rational Design: Implementing Ferroelectricity in Moleculeâ€Based Magnets.<br>Angewandte Chemie - International Edition, 2012, 51, 8356-8360.                                                                                                                | 13.8 | 157       |
| 111 | Solid-State Aggregation of Metallacyclophane-Based Mn <sup>II</sup> Cu <sup>II</sup><br>One-Dimensional Ladders. Inorganic Chemistry, 2012, 51, 7019-7021.                                                                                                                    | 4.0  | 15        |
| 112 | Slow magnetic relaxation in carbonato-bridged dinuclear lanthanide(iii) complexes with 2,3-quinoxalinediolate ligands. Chemical Communications, 2012, 48, 7726.                                                                                                               | 4.1  | 50        |
| 113 | Reversible Solvatomagnetic Switching in a Spongelike Manganese(II)–Copper(II) 3D Open Framework<br>with a Pillared Square/Octagonal Layer Architecture. Chemistry - A European Journal, 2012, 18,<br>1608-1617.                                                               | 3.3  | 86        |
| 114 | Photoswitching of the antiferromagnetic coupling in an oxamato-based dicopper(ii) anthracenophane.<br>Chemical Communications, 2011, 47, 11035.                                                                                                                               | 4.1  | 39        |
| 115 | Synthesis, Crystal Structures, and Magnetic Properties of a New Family of Heterometallic<br>Cyanide-Bridged Fe <sup>III</sup> <sub>2</sub> M <sup>II</sup> <sub>2</sub> (M = Mn, Ni, and Co) Square<br>Complexes. Inorganic Chemistry, 2011, 50, 6250-6262.                   | 4.0  | 67        |
| 116 | High Proton Conduction in a Chiral Ferromagnetic Metal–Organic Quartz-like Framework. Journal of the American Chemical Society, 2011, 133, 15328-15331.                                                                                                                       | 13.7 | 302       |
| 117 | Spin Control in Oxamato-Based Manganese(II)–Copper(II) Coordination Polymers with Brick-Wall Layer<br>Architectures. Inorganic Chemistry, 2011, 50, 8694-8696.                                                                                                                | 4.0  | 33        |
| 118 | New Magnetic Thin Film Hybrid Materials Built by the Incorporation of Octanickel(II)-oxamato<br>Clusters Between Clay Mineral Platelets. Journal of Physical Chemistry Letters, 2011, 2, 2004-2008.                                                                           | 4.6  | 17        |
| 119 | Slow relaxation of the magnetization in Oximato-bridged heterobimetallic Copper(II)-Manganese(III) chains. Journal of the Brazilian Chemical Society, 2011, 22, 976-986.                                                                                                      | 0.6  | 2         |
| 120 | Synthesis, Crystal Structures and Magnetic Properties of M <sup>II</sup> Cu <sup>II</sup> Chains<br>(M=Mn and Co) with Sterically Hindered Alkylâ€Substituted Phenyloxamate Bridging Ligands. Chemistry -<br>A European Journal, 2011, 17, 2176-2188.                         | 3.3  | 58        |
| 121 | Rational Enantioselective Design of Chiral Heterobimetallic Singleâ€Chain Magnets: Synthesis, Crystal<br>Structures and Magnetic Properties of Oxamatoâ€Bridged M <sup>II</sup> Cu <sup>II</sup> Chains<br>(M=Mn, Co). Chemistry - A European Journal, 2011, 17, 12482-12494. | 3.3  | 78        |
| 122 | Single chain magnet behaviour in an enantiopure chiral cobalt(ii)–copper(ii) one-dimensional<br>compound. Chemical Communications, 2010, 46, 2322.                                                                                                                            | 4.1  | 100       |
| 123 | Supramolecular coordination chemistry of aromatic polyoxalamide ligands: A metallosupramolecular approach toward functional magnetic materials. Coordination Chemistry Reviews, 2010, 254, 2281-2296.                                                                         | 18.8 | 178       |
| 124 | Oligoâ€ <i>m</i> â€phenyleneoxalamide Copper(II) Mesocates as Electro‣witchable Ferromagnetic<br>Metal–Organic Wires. Chemistry - A European Journal, 2010, 16, 12838-12851.                                                                                                  | 3.3  | 30        |
| 125 | Synthesis, crystal structure and magnetic properties of two oxalato-bridged dimetallic trinuclear complexes combined with a polar cation. Dalton Transactions, 2010, 39, 4951.                                                                                                | 3.3  | 35        |
| 126 | Tuning the Spin Ground State in Heterononanuclear Nickel(II)â^'Copper(II) Cylinders with a Triangular<br>Metallacyclophane Core. Inorganic Chemistry, 2010, 49, 11264-11266.                                                                                                  | 4.0  | 5         |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Variation of the ground spin state in homo- and hetero-octanuclear copper(ii) and nickel(ii)<br>double-star complexes with a meso-helicate-type metallacryptand core. Dalton Transactions, 2010, 39,<br>4786.                                                                                                                                                             | 3.3  | 11        |
| 128 | [FeIILSCoIIILS]2⇔ [FeIIILSCoIIHS]2 photoinduced conversion in a cyanide-bridged heterobimetallic molecular square. Chemical Communications, 2010, 46, 8995.                                                                                                                                                                                                               | 4.1  | 113       |
| 129 | Ferromagnetic Coupling by Spin Polarization in a Trinuclear Copper(II) Metallacyclophane with a<br>Triangular Cage-Like Structure. Inorganic Chemistry, 2009, 48, 5244-5249.                                                                                                                                                                                              | 4.0  | 47        |
| 130 | Redox Switch-Off of the Ferromagnetic Coupling in a Mixed-Spin Tricobalt(II) Triple Mesocate. Journal of the American Chemical Society, 2009, 131, 14614-14615.                                                                                                                                                                                                           | 13.7 | 39        |
| 131 | Molecular-Programmed Self-Assembly of Homo- and Heterometallic Tetranuclear Coordination<br>Compounds: Synthesis, Crystal Structures, and Magnetic Properties of Rack-Type<br>Cu <sup>II</sup> <sub>2</sub> M <sup>II</sup> <sub>2</sub> Complexes (M = Cu and Ni) with<br>Tetranucleating Phenylenedioxamato Bridging Ligands. Inorganic Chemistry. 2009. 48. 4661-4673. | 4.0  | 22        |
| 132 | A Metallacryptandâ€Based Manganese(II)–Cobalt(II) Ferrimagnet with a Threeâ€Dimensional Honeycomb<br>Openâ€Framework Architecture. Angewandte Chemie - International Edition, 2008, 47, 4211-4216.                                                                                                                                                                        | 13.8 | 41        |
| 133 | Rational design of a new class of heterobimetallic molecule-based magnets: Synthesis, crystal structures, and magnetic properties of oxamato-bridged (M′=Lil and MnII; M=NiII and CoII) open-frameworks with a three-dimensional honeycomb architecture. Inorganica Chimica Acta, 2008, 361, 3394-3402.                                                                   | 2.4  | 49        |
| 134 | Magnetic properties of six-coordinated high-spin cobalt(II) complexes: Theoretical background and its application. Inorganica Chimica Acta, 2008, 361, 3432-3445.                                                                                                                                                                                                         | 2.4  | 555       |
| 135 | Structure and Magnetism of Dinuclear Copper(II) Metallacyclophanes with Oligoacenebis(oxamate)<br>Bridging Ligands:A Theoretical Predictions on Wirelike Magnetic Coupling. Journal of the American<br>Chemical Society, 2008, 130, 576-585.                                                                                                                              | 13.7 | 64        |
| 136 | Ligand design for multidimensional magnetic materials: a metallosupramolecular perspective. Dalton<br>Transactions, 2008, , 2780.                                                                                                                                                                                                                                         | 3.3  | 244       |
| 137 | Molecular-Programmed Self-Assembly of Homo- and Heterometallic Penta- and Hexanuclear<br>Coordination Compounds:Â Synthesis, Crystal Structures, and Magnetic Properties of Ladder-Type<br>Cull2MIIx(M = Cu, Ni;x= 3, 4) Oxamato Complexes with Cull2Metallacyclophane Cores. Inorganic<br>Chemistry, 2007, 46, 4504-4514.                                                | 4.0  | 45        |
| 138 | Ligand Design for Heterobimetallic Single-Chain Magnets: Synthesis, Crystal Structures, and Magnetic<br>Properties of MIICuII (M=Mn, Co) Chains with Sterically Hindered Methyl-Substituted Phenyloxamate<br>Bridging Ligands. Chemistry - A European Journal, 2007, 13, 2054-2066.                                                                                       | 3.3  | 105       |
| 139 | Solidâ€State Anion–Guest Encapsulation by Metallosupramolecular Capsules Made from Two<br>Tetranuclear Copper(II) Complexes. European Journal of Inorganic Chemistry, 2007, 2007, 4569-4573.                                                                                                                                                                              | 2.0  | 9         |
| 140 | High-valent bis(oxo)-bridged dinuclear manganese oxamates: Synthesis, crystal structures, magnetic properties, and electronic structure calculations of bis(μ-oxo)dimanganese(IV) complexes with a binucleating o-phenylenedioxamate ligand. Inorganica Chimica Acta, 2007, 360, 221-232.                                                                                 | 2.4  | 14        |
| 141 | Ordered mesoporous silicas as host for the incorporation and aggregation of octanuclear nickel(ii)<br>single-molecule magnets: a bottom-up approach to new magnetic nanocomposite materials. Journal of<br>Materials Chemistry, 2006, 16, 2702-2714.                                                                                                                      | 6.7  | 36        |
| 142 | Chemistry and reactivity of mononuclear manganese oxamate complexes: Oxidative carbon–carbon bond cleavage of vic-diols by dioxygen and aldehydes catalyzed by a trans-dipyridine manganese(III) complex with a tetradentate o-phenylenedioxamate ligand. Journal of Molecular Catalysis A, 2006, 243, 214-220.                                                           | 4.8  | 31        |
| 143 | Chemistry and reactivity of dinuclear manganese oxamate complexes: Aerobic catechol oxidation catalyzed by high-valent bis(oxo)-bridged dimanganese(IV) complexes with a homologous series of binucleating 4,5-disubstituted-o-phenylenedioxamate ligands. Journal of Molecular Catalysis A, 2006, 250, 20-26.                                                            | 4.8  | 44        |
| 144 | Cobalt(II)-Copper(II) Bimetallic Chains as a New Class of Single-Chain Magnets. Advanced Materials, 2004, 16, 1597-1600.                                                                                                                                                                                                                                                  | 21.0 | 135       |

| #   | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Chemistry and reactivity of dinuclear iron oxamate complexes: alkane oxidation with hydrogen peroxide catalysed by an oxo-bridged diiron(III) complex with amide and carboxylate ligation.<br>Inorganica Chimica Acta, 2004, 357, 2713-2720. | 2.4  | 33        |
| 146 | Self-assembly and magnetic properties of a double-propeller octanuclear copper(ii) complex with a meso-helicate-type metallacryptand core. Chemical Communications, 2004, , 920-921.                                                         | 4.1  | 28        |
| 147 | Spin Control in Ladderlike Hexanuclear Copper(II) Complexes with Metallacyclophane Cores. Inorganic Chemistry, 2004, 43, 2768-2770.                                                                                                          | 4.0  | 43        |
| 148 | Magnetic Anisotropy of a High-Spin Octanuclear Nickel(II) Complex with ameso-Helicate Core.<br>Inorganic Chemistry, 2004, 43, 7594-7596.                                                                                                     | 4.0  | 41        |
| 149 | Long-Range Magnetic Coupling through Extended π-Conjugated Aromatic Bridges in Dinuclear<br>Copper(II) Metallacyclophanes. Journal of the American Chemical Society, 2003, 125, 10770-10771.                                                 | 13.7 | 103       |
| 150 | Alkane oxidation by a carboxylate-bridged dimanganese(III) complex. Chemical Communications, 2001, , 2102-2103.                                                                                                                              | 4.1  | 50        |