
Carole Peyssonnaux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3062264/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The transcription factor HIF-1α mediates plasticity of NKp46+ innate lymphoid cells in the gut. Journal of Experimental Medicine, 2022, 219, .	8.5	22
2	Low transferrin levels predict heightened inflammation in patients with COVID-19: New insights. International Journal of Infectious Diseases, 2022, 116, 74-79.	3.3	20
3	Neutrophils from hereditary hemochromatosis patients are protected from iron excess and are primed. Blood Advances, 2020, 4, 3853-3863.	5.2	21
4	Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion, 2020, 54, 1-7.	3.4	245
5	Iron: Innocent bystander or vicious culprit in COVID-19 pathogenesis?. International Journal of Infectious Diseases, 2020, 97, 303-305.	3.3	139
6	Dendritic cell–derived hepcidin sequesters iron from the microbiota to promote mucosal healing. Science, 2020, 368, 186-189.	12.6	80
7	New insights into the links between hypoxia and iron homeostasis. Current Opinion in Hematology, 2019, 26, 125-130.	2.5	51
8	Iron Regulator Hepcidin Impairs Macrophage-Dependent Cardiac Repair After Injury. Circulation, 2019, 139, 1530-1547.	1.6	48
9	Epidermal hepcidin is required for neutrophil response to bacterial infection. Journal of Clinical Investigation, 2019, 130, 329-334.	8.2	27
10	Serum Iron Protects from Renal Postischemic Injury. Journal of the American Society of Nephrology: JASN, 2017, 28, 3605-3615.	6.1	25
11	Pulmonary Iron Homeostasis in Hepcidin Knockout Mice. Frontiers in Physiology, 2017, 8, 804.	2.8	22
12	Iron Regulatory Protein 1 Sustains Mitochondrial Iron Loading and Function in Frataxin Deficiency. Cell Metabolism, 2015, 21, 311-323.	16.2	61
13	Hypoxia interferes with aryl hydrocarbon receptor pathway in <scp>hCMEC</scp> /D3 human cerebral microvascular endothelial cells. Journal of Neurochemistry, 2015, 132, 373-383.	3.9	22
14	Myeloid HIF-1 Is Protective in <i>Helicobacter pylori</i> –Mediated Gastritis. Journal of Immunology, 2015, 194, 3259-3266.	0.8	32
15	Myeloid HIFs Are Dispensable for Resolution of Inflammation during Skeletal Muscle Regeneration. Journal of Immunology, 2015, 194, 3389-3399.	0.8	21
16	Targeted disruption of hepcidin in the liver recapitulates the hemochromatotic phenotype. Blood, 2014, 123, 3646-3650.	1.4	68
17	Investigating the real role of HIF-1 and HIF-2 in iron recycling by macrophages. Haematologica, 2014, 99, e112-e114.	3.5	18
18	The gut in iron homeostasis: role of HIF-2 under normal and pathological conditions. Blood, 2013, 122, 885-892.	1.4	90

#	Article	IF	CITATIONS
19	Preeclamptic Plasma Induces Transcription Modifications Involving the AP-1 Transcriptional Regulator JDP2 in Endothelial Cells. American Journal of Pathology, 2013, 183, 1993-2006.	3.8	22
20	Copper Deficiency Leads to Anemia, Duodenal Hypoxia, Upregulation of HIF-2α and Altered Expression of Iron Absorption Genes in Mice. PLoS ONE, 2013, 8, e59538.	2.5	48
21	Hepatic hypoxia-inducible factor-2 down-regulates hepcidin expression in mice through an erythropoietin-mediated increase in erythropoiesis. Haematologica, 2012, 97, 827-834.	3.5	140
22	HIF1α and pancreatic βâ€cell development. FASEB Journal, 2012, 26, 2734-2742.	0.5	14
23	Hepcidin is localised in gastric parietal cells, regulates acid secretion and is induced by <i>Helicobacter pylori</i> infection. Gut, 2012, 61, 193-201.	12.1	71
24	Hypoferraemia during the early inflammatory response is dependent on tumour necrosis factor activity in a murine model of protracted peritonitis. Molecular Medicine Reports, 2012, 6, 838-842.	2.4	7
25	Deletion of HIF-2α in the enterocytes decreases the severity of tissue iron loading in hepcidin knockout mice. Blood, 2012, 119, 587-590.	1.4	44
26	Basal expression of copper transporter 1 in intestinal epithelial cells is regulated by hypoxiaâ€inducible factor 2α. FEBS Letters, 2012, 586, 2423-2427.	2.8	20
27	The Gut: Role at Steady State and Variations in Disordered Conditions. Blood, 2012, 120, SCI-23-SCI-23.	1.4	Ο
28	Lack of iron-related phenotype in Sp6 intestinal knockout mice. Blood Cells, Molecules, and Diseases, 2011, 47, 46-49.	1.4	3
29	HIF-2α, but not HIF-1α, promotes iron absorption in mice. Journal of Clinical Investigation, 2009, 119, 1159-1166.	8.2	407
30	Critical Role of HIF-1α in Keratinocyte Defense against Bacterial Infection. Journal of Investigative Dermatology, 2008, 128, 1964-1968.	0.7	116
31	Pharmacologic Augmentation of Hypoxiaâ€Inducible Factor–1α with Mimosine Boosts the Bactericidal Capacity of Phagocytes. Journal of Infectious Diseases, 2008, 197, 214-217.	4.0	79
32	Role of the hypoxia inducible factors HIF in iron metabolism. Cell Cycle, 2008, 7, 28-32.	2.6	177
33	Cutting Edge: Essential Role of Hypoxia Inducible Factor- $1\hat{l}$ ± in Development of Lipopolysaccharide-Induced Sepsis. Journal of Immunology, 2007, 178, 7516-7519.	0.8	449
34	Differential Regulation of B-Raf Isoforms by Phosphorylation and AutoinhibitoryMechanisms. Molecular and Cellular Biology, 2007, 27, 31-43.	2.3	35
35	Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). Journal of Clinical Investigation, 2007, 117, 1926-1932.	8.2	538
36	HIF-1 regulates heritable variation and allele expression phenotypes of the macrophage immune response gene SLC11A1 from a Z-DNA–forming microsatellite. Blood, 2007, 110, 3039-3048.	1.4	65

CAROLE PEYSSONNAUX

#	Article	IF	CITATIONS
37	TLR4-dependent hepcidin expression by myeloid cells in response to bacterial pathogens. Blood, 2006, 107, 3727-3732.	1.4	316
38	HIF-1 \hat{l} ± expression regulates the bactericidal capacity of phagocytes. Journal of Clinical Investigation, 2005, 115, 1806-1815.	8.2	608
39	Hypoxia-induced neutrophil survival is mediated by HIF-1α–dependent NF-κB activity. Journal of Experimental Medicine, 2005, 201, 105-115.	8.5	762
40	An Unexpected Role for Hypoxic Response: Oxygenation and Inflammation. Cell Cycle, 2004, 3, 163-166.	2.6	33
41	A Raf-1 Mutant That Dissociates MEK/Extracellular Signal-Regulated Kinase Activation from Malignant Transformation and Differentiation but Not Proliferation. Molecular and Cellular Biology, 2003, 23, 1983-1993.	2.3	51
42	Activation of ERK, Controlled by Rac1 and Cdc42 via Akt, Is Required for Anoikis. Annals of the New York Academy of Sciences, 2002, 973, 145-148.	3.8	32
43	The Raf/MEK/ERK pathway: new concepts of activation. Biology of the Cell, 2001, 93, 53-62.	2.0	619
44	The p42/p44 Mitogen-activated Protein Kinase Activation Triggers p27Kip1 Degradation Independently of CDK2/Cyclin E in NIH 3T3 Cells. Journal of Biological Chemistry, 2001, 276, 34958-34965.	3.4	55
45	Raf-MEK-Erk Cascade in Anoikis Is Controlled by Rac1 and Cdc42 via Akt. Molecular and Cellular Biology, 2001, 21, 6706-6717.	2.3	108
46	Ras mediates the cAMP-dependent activation of extracellular signal-regulated kinases (ERKs) in melanocytes. EMBO Journal, 2000, 19, 2900-2910.	7.8	294
47	Induction of Postmitotic Neuroretina Cell Proliferation by Distinct Ras Downstream Signaling Pathways. Molecular and Cellular Biology, 2000, 20, 7068-7079.	2.3	57