
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3062207/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spontaneous mutation rate estimates for the principal malaria vectors Anopheles coluzzii and Anopheles stephensi. Scientific Reports, 2022, 12, 226.	3.3	3
2	TWO NOVEL SINGLE NUCLEOTIDE POLYMORPHISMS IN THE VOLTAGE-GATED SODIUM CHANNEL GENE IDENTIFIED IN AEDES AEGYPTI MOSQUITOES FROM FLORIDA. Journal of the Florida Mosquito Control Association, 2022, 69, .	0.3	2
3	Perfect association between spatial swarm segregation and the X-chromosome speciation island in hybridizing Anopheles coluzzii and Anopheles gambiae populations. Scientific Reports, 2022, 12, .	3.3	0
4	Frequency of sodium channel genotypes and association with pyrethrum knockdown time in populations of Californian Aedes aegypti. Parasites and Vectors, 2021, 14, 141.	2.5	12
5	A Magnetic-Bead-Based Mosquito DNA Extraction Protocol for Next-Generation Sequencing. Journal of Visualized Experiments, 2021, , .	0.3	4
6	The origin of island populations of the African malaria mosquito, Anopheles coluzzii. Communications Biology, 2021, 4, 630.	4.4	7
7	Evidence of Local Extinction and Reintroduction of Aedes aegypti in Exeter, California. Frontiers in Tropical Diseases, 2021, 2, .	1.4	7
8	Mosquito Control Priorities in Florida—Survey Results from Florida Mosquito Control Districts. Pathogens, 2021, 10, 947.	2.8	4
9	Profiling Transcriptional Response of Dengue-2 Virus Infection in Midgut Tissue of Aedes aegypti. Frontiers in Tropical Diseases, 2021, 2, .	1.4	3
10	Genetically Modified Mosquitoes. Edis, 2021, 2021, .	0.1	1
11	Population genomics of <i>Drosophila suzukii</i> reveal longitudinal population structure and signals of migrations in and out of the continental United States. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	19
12	The Population Genomics of Aedes aegypti: Progress and Prospects. Population Genomics, 2021, , .	0.5	0
13	The Population Genomics of Anopheles gambiae Species Complex: Progress and Prospects. Population Genomics, 2021, , 1.	0.5	0
14	Multiple Novel Clades of Anopheline Mosquitoes Caught Outdoors in Northern Zambia. Frontiers in Tropical Diseases, 2021, 2, .	1.4	2
15	Complete mitogenome sequence of <i>Anopheles coustani</i> from São Tomé island. Mitochondrial DNA Part B: Resources, 2020, 5, 3376-3378.	0.4	1
16	Next-generation gene drive for population modification of the malaria vector mosquito, <i>Anopheles gambiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22805-22814.	7.1	157
17	Core commitments for field trials of gene drive organisms. Science, 2020, 370, 1417-1419.	12.6	67
18	Evidence for Divergent Selection on Immune Genes between the African Malaria Vectors, Anopheles coluzzii and A. gambiae. Insects, 2020, 11, 893.	2.2	3

#	Article	IF	CITATIONS
19	Complete mitogenome sequences of <i>Aedes<i>(</i>Howardina<i>)</i>busckii</i> and <i>Aedes<i>(</i>Ochlerotatus<i>)</i>taeniorhynchus</i> fr the Caribbean Island of Saba. Mitochondrial DNA Part B: Resources, 2020, 5, 1163-1164.	om0.4	3
20	Abundance of conserved CRISPR-Cas9 target sites within the highly polymorphic genomes of Anopheles and Aedes mosquitoes. Nature Communications, 2020, 11, 1425.	12.8	28
21	Malaria Vectors and Vector Surveillance in Limpopo Province (South Africa): 1927 to 2018. International Journal of Environmental Research and Public Health, 2020, 17, 4125.	2.6	13
22	Development of a confinable gene drive system in the human disease vector Aedes aegypti. ELife, 2020, 9,	6.0	156
23	High endemism of mosquitoes on São Tomé and PrÃncipe Islands: evaluating the general dynamic model in a worldwide island comparison. Insect Conservation and Diversity, 2019, 12, 69-79.	3.0	10
24	Characterization of the complete mitogenome of Anopheles aquasalis, and phylogenetic divergences among Anopheles from diverse geographic zones. PLoS ONE, 2019, 14, e0219523.	2.5	20
25	The genetic structure of Aedes aegypti populations is driven by boat traffic in the Peruvian Amazon. PLoS Neglected Tropical Diseases, 2019, 13, e0007552.	3.0	16
26	Introgression between Anopheles gambiae and Anopheles coluzzii in Burkina Faso and its associations with kdr resistance and Plasmodium infection. Malaria Journal, 2019, 18, 127.	2.3	8
27	Genome-wide divergence among invasive populations of Aedes aegypti in California. BMC Genomics, 2019, 20, 204.	2.8	44
28	Sequencing of Tuta absoluta genome to develop SNP genotyping assays for species identification. Journal of Pest Science, 2019, 92, 1397-1407.	3.7	24
29	Transcontinental dispersal of Anopheles gambiae occurred from West African origin via serial founder events. Communications Biology, 2019, 2, 473.	4.4	13
30	Ethanol as a potential mosquito sample storage medium for RNA preservation. F1000Research, 2019, 8, 1431.	1.6	5
31	The fate of genes that cross species boundaries after a major hybridization event in a natural mosquito population. Molecular Ecology, 2018, 27, 4978-4990.	3.9	23
32	Complete mitogenome sequence of Aedes (Stegomyia) aegypti derived from field isolates from California and South Africa. Mitochondrial DNA Part B: Resources, 2018, 3, 994-995.	0.4	7
33	Mosquito community composition in South Africa and some neighboring countries. Parasites and Vectors, 2018, 11, 331.	2.5	36
34	Complete Anopheles funestus mitogenomes reveal an ancient history of mitochondrial lineages and their distribution in southern and central Africa. Scientific Reports, 2018, 8, 9054.	3.3	18
35	Mitochondrial genomes of Anopheles arabiensis, An. gambiae and An. coluzzii show no clear species division. F1000Research, 2018, 7, 347.	1.6	12
36	Mitochondrial genomes of Anopheles arabiensis, An. gambiae and An. coluzzii show no clear species division. F1000Research, 2018, 7, 347.	1.6	9

ΥΟΟSOOK LEE

#	Article	IF	CITATIONS
37	Anopheles darlingi polytene chromosomes: revised maps including newly described inversions and evidence for population structure in Manaus. Memorias Do Instituto Oswaldo Cruz, 2016, 111, 335-346.	1.6	4
38	The Genetic Basis of Host Preference and Resting Behavior in the Major African Malaria Vector, Anopheles arabiensis. PLoS Genetics, 2016, 12, e1006303.	3.5	76
39	Surveillance, insecticide resistance and control of an invasive Aedes aegypti (Diptera: Culicidae) population in California. F1000Research, 2016, 5, 194.	1.6	37
40	Surveillance, insecticide resistance and control of an invasive Aedes aegypti (Diptera: Culicidae) population in California. F1000Research, 2016, 5, 194.	1.6	35
41	Comparing efficacy of a sweep net and a dip method for collection of mosquito larvae in large bodies of water in South Africa. F1000Research, 2016, 5, 713.	1.6	5
42	A DNA extraction protocol for improved DNA yield from individual mosquitoes. F1000Research, 2015, 4, 1314.	1.6	27
43	Defining Genetic, Taxonomic, and Geographic Boundaries Among Species of the <i>Psorophora confinnis</i> (Diptera: Culicidae) Complex in North and South America. Journal of Medical Entomology, 2015, 52, 907-917.	1.8	2
44	Adaptive introgression in an African malaria mosquito coincident with the increased usage of insecticide-treated bed nets. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 815-820.	7.1	204
45	Colonization of malaria vectors under semi-field conditions as a strategy for maintaining genetic and phenotypic similarity with wild populations. Malaria Journal, 2015, 14, 10.	2.3	21
46	A Multi-detection Assay for Malaria Transmitting Mosquitoes. Journal of Visualized Experiments, 2015, , e52385.	0.3	15
47	Complex genome evolution in <i>Anopheles coluzzii</i> associated with increased insecticide usage in Mali. Molecular Ecology, 2015, 24, 5145-5157.	3.9	47
48	Absence of kdr resistance alleles in the Union of the Comoros, East Africa. F1000Research, 2015, 4, 146.	1.6	6
49	Diversity, Differentiation, and Linkage Disequilibrium: Prospects for Association Mapping in the Malaria Vector <i>Anopheles arabiensis</i> . G3: Genes, Genomes, Genetics, 2014, 4, 121-131.	1.8	33
50	A new multiplex <scp>SNP</scp> genotyping assay for detecting hybridization and introgression between the <scp>M</scp> and <scp>S</scp> molecular forms of <i><scp>A</scp>nopheles gambiae</i> . Molecular Ecology Resources, 2014, 14, 297-305.	4.8	26
51	Plasmodium falciparum infection rates for some Anopheles spp. from Guinea-Bissau, West Africa. F1000Research, 2014, 3, 243.	1.6	10
52	Plasmodium falciparum infection rates for some Anopheles spp. from Guinea-Bissau, West Africa. F1000Research, 2014, 3, 243.	1.6	11
53	A preliminary investigation of the relationship between water quality and Anopheles gambiae larval habitats in western Cameroon. Malaria Journal, 2013, 12, 225.	2.3	12
54	Spatiotemporal dynamics of gene flow and hybrid fitness between the M and S forms of the malaria mosquito, <i>Anopheles gambiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19854-19859.	7.1	95

#	Article	IF	CITATIONS
55	An analysis of two island groups as potential sites for trials of transgenic mosquitoes for malaria control. Evolutionary Applications, 2013, 6, 706-720.	3.1	26
56	Chromosome Inversions, Genomic Differentiation and Speciation in the African Malaria Mosquito Anopheles gambiae. PLoS ONE, 2013, 8, e57887.	2.5	28
57	Speciation in Anopheles gambiae $\hat{a} \in$ " The Distribution of Genetic Polymorphism and Patterns of Reproductive Isolation Among Natural Populations. , 2013, , .		20
58	Single-Nucleotide Polymorphisms for High-Throughput Genotyping of Anopheles arabiensis in East and Southern Africa. Journal of Medical Entomology, 2012, 49, 307-315.	1.8	10
59	Identification and Characterization of Single Nucleotide Polymorphisms (SNPs) in <i>Culex theileri</i> (Diptera: Culicidae). Journal of Medical Entomology, 2012, 49, 581-588.	1.8	5
60	Microsatellite-Based Parentage Analysis of <i>Aedes aegypti</i> (Diptera: Culicidae) Using Nonlethal DNA Sampling. Journal of Medical Entomology, 2012, 49, 85-93.	1.8	7
61	The Knockdown Resistance Mutation and Knockdown Time in Anopheles gambiae Collected from Mali Evaluated Through a Bottle Bioassay and a Novel Insecticide-Treated Net Bioassay. Journal of the American Mosquito Control Association, 2012, 28, 119-122.	0.7	6
62	Culex pipiens Sensu Lato in California: A Complex Within a Complex?. Journal of the American Mosquito Control Association, 2012, 28, 113-121.	0.7	18
63	High Degree of Single Nucleotide Polymorphisms in California Culex pipiens (Diptera: Culicidae) sensu lato. Journal of Medical Entomology, 2012, 49, 299-306.	1.8	15
64	Differential Plasmodium falciparum infection of Anopheles gambiae s.s. molecular and chromosomal forms in Mali. Malaria Journal, 2012, 11, 133.	2.3	25
65	Altitudinal genetic and morphometric variation among populations of Culex theileri Theobald (Diptera: Culicidae) from northeastern Turkey. Journal of Vector Ecology, 2012, 37, 197-209.	1.0	28
66	Supplementary data for: High Degree of Single Nucleotide Polymorphisms in California Culex pipiens (Diptera: Culicidae) sensu lato. Journal of Medical Entomology, 2012, 49, .	1.8	0
67	Asymmetric introgression between the M and S forms of the malaria vector, Anopheles gambiae, maintains divergence despite extensive hybridization. Molecular Ecology, 2011, 20, 4983-4994.	3.9	70
68	Population genetic structure of Anopheles arabiensis and Anopheles gambiae in a malaria endemic region of southern Tanzania. Malaria Journal, 2011, 10, 289.	2.3	17
69	Morphological Differentiation May Mediate Mate-Choice between Incipient Species of Anopheles gambiae s.s PLoS ONE, 2011, 6, e27920.	2.5	28
70	Identification of three single nucleotide polymorphisms in Anopheles gambiae immune signaling genes that are associated with natural Plasmodium falciparum infection. Malaria Journal, 2010, 9, 160.	2.3	28
71	Desiccation Resistance Among Subpopulations ofAnopheles gambiaes.s. From Selinkenyi, Mali. Journal of Medical Entomology, 2009, 46, 316-320.	1.8	35
72	Ecological and genetic relationships of the Forest-M form among chromosomal and molecular forms of the malaria vector Anopheles gambiae sensu stricto. Malaria Journal, 2009, 8, 75.	2.3	37

#	Article	IF	CITATIONS
73	Relationship Between <i>kdr</i> Mutation and Resistance to Pyrethroid and DDT Insecticides in Natural Populations of <i>Anopheles gambiae</i> . Journal of Medical Entomology, 2008, 45, 260-266.	1.8	81
74	Relationship Between kdr Mutation and Resistance to Pyrethroid and DDT Insecticides in Natural Populations of Anopheles gambiae. Journal of Medical Entomology, 2008, 45, 260-266.	1.8	97
75	Identification and Functional Analysis of Light-Responsive Unique Genes and Gene Family Members in Rice. PLoS Genetics, 2008, 4, e1000164.	3.5	69
76	Evidence for subdivision within the M molecular form of Anopheles gambiae. Molecular Ecology, 2006, 16, 639-649.	3.9	64
77	Grammar Structure and the Dynamics of Language Evolution. Lecture Notes in Computer Science, 2005, , 624-633.	1.3	1
78	Surveillance, insecticide resistance and control of an invasive Aedes aegypti (Diptera: Culicidae) population in California. F1000Research, 0, 5, 194.	1.6	3