
## Venkata Krishnaiah Kummara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3062173/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Highly sensitive and cost-effective metal-semiconductor-metal asymmetric type Schottky metallization<br>based ultraviolet photodetecting sensors fabricated on n-type GaN. Materials Science in<br>Semiconductor Processing, 2022, 138, 106297. | 4.0 | 10        |
| 2  | Structural and Morphological Studies of Bi <sub>2</sub> O <sub>3</sub> /MWCNTs Doped Reduced<br>Graphene Oxide for Energy Storage Applications. ECS Journal of Solid State Science and Technology,<br>2022, 11, 031004.                         | 1.8 | 2         |
| 3  | Enhanced photoresponse performance in GaN based symmetric type MSM ultraviolet-A and MIS ultraviolet-A to C photodetectors. Sensors and Actuators A: Physical, 2022, 339, 113502.                                                               | 4.1 | 13        |
| 4  | Structure and morphology of yttrium doped barium titanate ceramics for multi-layer capacitor applications. Materials Today: Proceedings, 2021, 46, 259-262.                                                                                     | 1.8 | 9         |
| 5  | Role of excitation wavelength and dopant concentration on white light tunability of dysprosium doped titania-fluorophosphate glasses. Optical Materials, 2021, 111, 110593.                                                                     | 3.6 | 6         |
| 6  | Statistical analysis of current–voltage characteristics in Au/Ta2O5/n-GaN Schottky barrier<br>heterojunction using different methods. Applied Physics A: Materials Science and Processing, 2021, 127,<br>1.                                     | 2.3 | 6         |
| 7  | Orange light emission from co-precipitation derived CaZr4(PO4)6 doped with Sm3+ phosphor. Optik, 2021, 242, 167229.                                                                                                                             | 2.9 | 7         |
| 8  | High performance, self-powered and thermally stable 200–750Ânm spectral responsive gallium nitride<br>(GaN) based broadband photodetectors. Solar Energy Materials and Solar Cells, 2021, 225, 111033.                                          | 6.2 | 15        |
| 9  | A Study on Annealing Process Influenced Electrical Properties of Ni/CeO <sub>2</sub> /pâ€&i/Al Schottky<br>Barrier Diodes. Macromolecular Symposia, 2021, 398, 2000228.                                                                         | 0.7 | 4         |
| 10 | Luminescence and electron spin resonance studies of narrow-band UVB emitting Gd3+ doped Y2SiO5 nanophosphors synthesized by sol-gel method. Optik, 2021, 242, 167228.                                                                           | 2.9 | 4         |
| 11 | Studies on green emitting characteristics of sol-gel derived Er3+-doped Ca2La8(SiO4)6O2 phosphors.<br>Optik, 2021, 242, 167263.                                                                                                                 | 2.9 | 9         |
| 12 | Optical properties of ytterbium doped oxyfluoride glass-ceramics - Concentration and temperature dependence studies for optical refrigeration applications. Journal of Luminescence, 2021, 238, 118278.                                         | 3.1 | 7         |
| 13 | Optical and spectroscopic properties of Ho3+-doped fluorophosphate glasses for visible lighting applications. Materials Research Bulletin, 2020, 124, 110753.                                                                                   | 5.2 | 9         |
| 14 | Structural, optical and photoresponse characteristics of metal-insulator-semiconductor (MIS) type<br>Au/Ni/CeO2/GaN Schottky barrier ultraviolet photodetector. Materials Science in Semiconductor<br>Processing, 2020, 117, 105190.            | 4.0 | 20        |
| 15 | Quantum cutting and near-infrared emissions in Ho3+/Yb3+ codoped transparent glass-ceramics.<br>Journal of Luminescence, 2020, 226, 117424.                                                                                                     | 3.1 | 23        |
| 16 | Structure and EPR investigations on Gd3+ ions in magnesium-lead-borophosphate glasses. Journal of<br>Molecular Structure, 2020, 1208, 127877.                                                                                                   | 3.6 | 7         |
| 17 | Enhancement of 1.8â€Î¼m emission in Er3+/Tm3+ co-doped tellurite glasses: Role of energy transfer and dual wavelength pumping schemes. Journal of Alloys and Compounds, 2020, 827, 154038.                                                      | 5.5 | 17        |
| 18 | Near infrared broadband and visible upconversion emissions of erbium ions in oxyfluoride glasses for optical amplifier applications. Optics and Laser Technology, 2020, 127, 106167.                                                            | 4.6 | 10        |

| #  | Article                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Holmium doped bismuth-germanate glasses for green lighting applications: A spectroscopic study.<br>Optical Materials, 2019, 94, 436-443.                                                                                                                                        | 3.6 | 21        |
| 20 | Optical and radiative properties of Sm3+ions activated alkali-bismuth-germanate glasses. Journal of Luminescence, 2019, 214, 116566.                                                                                                                                            | 3.1 | 6         |
| 21 | Evaluation of temperature dependent electrical transport parameters in Fe3O4/SiO2/n-Si<br>metal–insulator-semiconductor (MIS) type Schottky barrier heterojunction in a wide temperature<br>range. Journal of Materials Science: Materials in Electronics, 2019, 30, 8955-8966. | 2.2 | 6         |
| 22 | Dysprosium doped niobium zinc fluorosilicate glasses: Interesting materials for white light emitting devices. Optik, 2019, 176, 457-463.                                                                                                                                        | 2.9 | 9         |
| 23 | Raman and photoluminescence studies of europium doped zinc-fluorophosphate glasses for photonic applications. Journal of Non-Crystalline Solids, 2019, 505, 115-121.                                                                                                            | 3.1 | 24        |
| 24 | Investigation of optical and spectroscopic properties of neodymium doped<br>oxyfluoro-titania-phosphate glasses for laser applications. Scripta Materialia, 2019, 162, 246-250.                                                                                                 | 5.2 | 15        |
| 25 | Investigation of spectroscopic properties of Sm3+-doped oxyfluorophosphate glasses for laser and display applications. Materials Research Bulletin, 2019, 110, 223-229.                                                                                                         | 5.2 | 27        |
| 26 | Spectroscopic studies on Yb 3+ -doped tungsten-tellurite glasses for laser applications. Journal of Non-Crystalline Solids, 2018, 479, 9-15.                                                                                                                                    | 3.1 | 27        |
| 27 | Photoluminescence of terbium doped oxyfluoro-titania-phosphate glasses for green light devices.<br>Ceramics International, 2018, 44, 15304-15309.                                                                                                                               | 4.8 | 8         |
| 28 | Luminescence properties of europium doped oxyfluorosilicate glasses for visible light devices.<br>Optical Materials, 2018, 83, 348-355.                                                                                                                                         | 3.6 | 28        |
| 29 | Lanthanide-Doped Tellurite Glasses for Solar Energy Harvesting. , 2018, , 249-273.                                                                                                                                                                                              |     | 1         |
| 30 | Photonic properties of novel Yb3+ doped germanium-lead oxyfluoride glass-ceramics for laser cooling applications. Frontiers of Optoelectronics, 2018, 11, 189-198.                                                                                                              | 3.7 | 8         |
| 31 | Photoluminescence of dysprosium doped antimony-magnesium-strontium-oxyfluoroborate glasses.<br>Ceramics International, 2018, 44, 21303-21308.                                                                                                                                   | 4.8 | 18        |
| 32 | Structure, morphology and optical characterization of Dy 3+ -doped BaYF 5 nanocrystals for warm white light emitting devices. Optical Materials, 2017, 70, 16-24.                                                                                                               | 3.6 | 36        |
| 33 | Er3+-doped tellurite glasses for enhancing a solar cell photocurrent through photon upconversion upon 1500Ânm excitation. Materials Chemistry and Physics, 2017, 199, 67-72.                                                                                                    | 4.0 | 49        |
| 34 | Broadband Emission in Tellurite Glasses. Springer Series in Materials Science, 2017, , 155-211.                                                                                                                                                                                 | 0.6 | 2         |
| 35 | Ytterbium-doped oxyfluoride nano-glass-ceramic fibers for laser cooling. Optical Materials Express, 2017, 7, 1980.                                                                                                                                                              | 3.0 | 34        |
| 36 | Luminescence and energy transfer in Dy 3+ /Tb 3+ co-doped transparent oxyfluorosilicate glass-ceramics for green emitting applications. Materials Research Bulletin, 2016, 83, 507-514.                                                                                         | 5.2 | 41        |

| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Progress in rare-earth-doped nanocrystalline glass-ceramics for laser cooling. Proceedings of SPIE, 2016, , .                                                               | 0.8 | Ο         |
| 38 | Visible up-conversion and near-infrared luminescence of Er3+/Yb3+ co-doped SbPO4-GeO2 glasses.<br>Optical Materials, 2016, 57, 71-78.                                       | 3.6 | 20        |
| 39 | Development of Yb3+-doped oxyfluoride glass-ceramics with low OHâ^'content containing<br>CaF2nanocrystals for optical refrigeration. Optical Engineering, 2016, 56, 011103. | 1.0 | 12        |
| 40 | Development of ytterbium-doped oxyfluoride glasses for laser cooling applications. Scientific Reports, 2016, 6, 21905.                                                      | 3.3 | 76        |
| 41 | Spectroscopy and near infrared upconversion of Er 3+ -doped TZNT glasses. Journal of Luminescence, 2016, 169, 270-276.                                                      | 3.1 | 27        |
| 42 | Concentration dependent luminescence properties of Sm3+-ions in tellurite–tungsten–zirconium<br>glasses. Optical Materials, 2015, 40, 26-35.                                | 3.6 | 71        |
| 43 | Ytterbium-doped glass-ceramics for optical refrigeration. Optics Express, 2015, 23, 4630.                                                                                   | 3.4 | 55        |
| 44 | Prospects of optical refrigeration in oxyfluoride glasses and glass-ceramics: experiments.<br>Proceedings of SPIE, 2015, , .                                                | 0.8 | 1         |
| 45 | Investigations on luminescence behavior of Er 3+ /Yb 3+ co-doped boro-tellurite glasses. Journal of<br>Molecular Structure, 2015, 1079, 130-138.                            | 3.6 | 34        |
| 46 | Broadband Near-Infrared Luminescence and Visible Upconversion of Er <sup>3+</sup> -Doped<br>Tungstate-Tellurite Glasses. Science of Advanced Materials, 2015, 7, 345-353.   | 0.7 | 7         |
| 47 | Fabrication of planar waveguides in oxyfluoride glass-ceramics by simple heat-treatment. , 2015, , .                                                                        |     | 1         |
| 48 | Ytterbium-doped oxyfluoride nano-glass-ceramic fibers for laser cooling. , 2015, , .                                                                                        |     | 1         |
| 49 | Three- and two-photon upconversion luminescence switching in Tm3+/Yb3+-codoped sodium niobate nanophosphor. Journal of Nanophotonics, 2014, 8, 083093.                      | 1.0 | 14        |
| 50 | Photon avalanche upconversion in Ho3+–Yb3+ co-doped transparent oxyfluoride glass–ceramics.<br>Chemical Physics Letters, 2014, 600, 34-37.                                  | 2.6 | 17        |
| 51 | Spectroscopy and radiation trapping of Yb3+ ions in lead phosphate glasses. Journal of Quantitative<br>Spectroscopy and Radiative Transfer, 2014, 140, 37-47.               | 2.3 | 36        |
| 52 | Optical and luminescence properties of Dy3+ ions in K–Sr–Al phosphate glasses for yellow laser<br>applications. Applied Physics B: Lasers and Optics, 2014, 117, 75-84.     | 2.2 | 21        |
| 53 | Optical properties of Yb3+ ions in fluorophosphate glasses for 1.0Âμm solid-state infrared lasers.<br>Applied Physics B: Lasers and Optics, 2013, 113, 527-535.             | 2.2 | 16        |
| 54 | Structural and luminescence behavior of lead fluoroborate glasses containing Eu3+ ions. Physica B:<br>Condensed Matter, 2013, 416, 88-100.                                  | 2.7 | 97        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Spectroscopic properties of Dy <sup>3+</sup> -doped oxyfluoride glasses for white light emitting diodes. Materials Express, 2013, 3, 61-70.                                                                               | 0.5 | 127       |
| 56 | Preparation and Characterization of Yb <sup>3</sup> <sup>+</sup> -Doped Metaphosphate Glasses for<br>High Energy and High Power Laser Applications. Science of Advanced Materials, 2013, 5, 276-284.                      | 0.7 | 10        |
| 57 | Fluorescence and Spectroscopic Properties of Yb3+-Doped Phosphate Glasses. Physics Procedia, 2012, 29, 109-113.                                                                                                           | 1.2 | 8         |
| 58 | Fabrication and Characterization of 3D-Waveguides in Eu3+-doped Oxyfluorosilicate Glass. , 2012, , .                                                                                                                      |     | 0         |
| 59 | White light generation in Dy <sup>3+</sup> -doped fluorosilicate glasses for W-LED applications.<br>Proceedings of SPIE, 2011, , .                                                                                        | 0.8 | 1         |
| 60 | Spontaneous and stimulated emission spectroscopy of a Nd(3+)-doped phosphate glass under wavelength selective pumping. Optics Express, 2011, 19, 19440-53.                                                                | 3.4 | 14        |
| 61 | Investigations on functional properties of<br>Al <sub>0.8</sub> Eu <sub>y</sub> La <sub>0.2-y</sub> TiO <sub>3</sub> (y = 0.01 - 0.04) nanoparticles<br>synthesized by hydrothermal method. Surface Review and Letters. 0 | 1.1 | Ο         |