
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3061312/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Erythropoietin Selectively Attenuates Cytokine Production and Inflammation in Cerebral Ischemia by Targeting Neuronal Apoptosis. Journal of Experimental Medicine, 2003, 198, 971-975.	8.5	481
2	Functionalization of liposomes with ApoE-derived peptides at different density affects cellular uptake and drug transport across a blood-brain barrier model. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 551-559.	3.3	149
3	Multifunctional Liposomes Reduce Brain β-Amyloid Burden and Ameliorate Memory Impairment in Alzheimer's Disease Mouse Models. Journal of Neuroscience, 2014, 34, 14022-14031.	3.6	141
4	Liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide affect Aβ aggregation features and cross the blood–brain-barrier: Implications for therapy of Alzheimer disease. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1583-1590.	3.3	121
5	Pyrroloquinoxaline Derivatives as High-Affinity and Selective 5-HT3Receptor Agonists:Â Synthesis, Further Structureâ^'Activity Relationships, and Biological Studies. Journal of Medicinal Chemistry, 1999, 42, 4362-4379.	6.4	103
6	Clusterin Binds to Al̂21–42 Oligomers with High Affinity and Interferes with Peptide Aggregation by Inhibiting Primary and Secondary Nucleation. Journal of Biological Chemistry, 2016, 291, 6958-6966.	3.4	99
7	Functionalization with ApoE-derived peptides enhances the interaction with brain capillary endothelial cells of nanoliposomes binding amyloid-beta peptide. Journal of Biotechnology, 2011, 156, 341-346.	3.8	92
8	Misplaced NMDA receptors in epileptogenesis contribute to excitotoxicity. Neurobiology of Disease, 2011, 43, 507-515.	4.4	91
9	Synthesis and Pharmacological Evaluation of Potent and Highly Selective D3 Receptor Ligands: Inhibition of Cocaine-Seeking Behavior and the Role of Dopamine D3/D2 Receptors. Journal of Medicinal Chemistry, 2003, 46, 3822-3839.	6.4	90
10	Novel, Potent, and Selective 5-HT3 Receptor Antagonists Based on the Arylpiperazine Skeleton: Synthesis, Structure, Biological Activity, and Comparative Molecular Field Analysis Studies. Journal of Medicinal Chemistry, 1995, 38, 2692-2704.	6.4	86
11	Neuroprotection with the CXCL8 inhibitor repertaxin in transient brain ischemia. Cytokine, 2005, 30, 125-131.	3.2	85
12	Quantitative autoradiographical analysis of the age-related modulation of central dopamine D1 and D2 receptors. Neuroscience, 1990, 36, 403-410.	2.3	82
13	Discovery of a New Class of Potential Multifunctional Atypical Antipsychotic Agents Targeting Dopamine D3 and Serotonin 5-HT1A and 5-HT2A Receptors: Design, Synthesis, and Effects on Behavior. Journal of Medicinal Chemistry, 2009, 52, 151-169.	6.4	79
14	Synthesis of New Arylpiperazinylalkylthiobenzimidazole, Benzothiazole, or Benzoxazole Derivatives as Potent and Selective 5-HT _{1A} Serotonin Receptor Ligands. Journal of Medicinal Chemistry, 2008, 51, 4529-4538.	6.4	77
15	Novel and Highly Potent 5-HT3 Receptor Agonists Based on a Pyrroloquinoxaline Structure. Journal of Medicinal Chemistry, 1997, 40, 3670-3678.	6.4	69
16	Pyrrolo[1,3]benzothiazepine-Based Serotonin and Dopamine Receptor Antagonists. Molecular Modeling, Further Structureâ^'Activity Relationship Studies, and Identification of Novel Atypical Antipsychotic Agents. Journal of Medicinal Chemistry, 2004, 47, 143-157.	6.4	60
17	Mono and Dually Decorated Nanoliposomes for Brain Targeting, In Vitro and In Vivo Studies. Pharmaceutical Research, 2014, 31, 1275-1289.	3.5	59
18	[3H](+)-Pentazocine binding to rat brain σ1 receptors. European Journal of Pharmacology, 1994, 266, 131-138.	2.6	57

#	Article	IF	CITATIONS
19	The Peculiar Role of the A2V Mutation in Amyloid-β (Aβ) 1–42 Molecular Assembly. Journal of Biological Chemistry, 2014, 289, 24143-24152.	3.4	54
20	GABAA receptor impairment in the genetic absence epilepsy rats from Strasbourg (GAERS): an immunocytochemical and receptor binding autoradiographic study. Epilepsy Research, 1993, 15, 229-238.	1.6	52
21	Specific Recognition of Biologically Active Amyloid-β Oligomers by a New Surface Plasmon Resonance-based Immunoassay and an in Vivo Assay in Caenorhabditis elegans. Journal of Biological Chemistry, 2012, 287, 27796-27805.	3.4	52
22	New Antipsychotic Agents with Serotonin and Dopamine Antagonist Properties Based on a Pyrrolo[2,1-b][1,3]benzothiazepine Structure. Journal of Medicinal Chemistry, 1998, 41, 3763-3772.	6.4	51
23	Targeting Dopamine D3 and Serotonin 5-HT1A and 5-HT2A Receptors for Developing Effective Antipsychotics: Synthesis, Biological Characterization, and Behavioral Studies. Journal of Medicinal Chemistry, 2014, 57, 9578-9597.	6.4	46
24	The hunt for brain Aβ oligomers by peripherally circulating multi-functional nanoparticles: Potential therapeutic approach for Alzheimer disease. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 43-52.	3.3	46
25	1,5-Benzodiazepine tricyclic derivatives exerting anti-inflammatory effects in mice by inhibiting interleukin-6 and prostaglandinE2production. Pharmacological Research, 2001, 43, 445-451.	7.1	43
26	The Molecular Assembly of Amyloid AÎ ² Controls Its Neurotoxicity and Binding to Cellular Proteins. PLoS ONE, 2011, 6, e24909.	2.5	39
27	Specific Targeting of Peripheral Serotonin 5-HT ₃ Receptors. Synthesis, Biological Investigation, and Structureâ^'Activity Relationships. Journal of Medicinal Chemistry, 2009, 52, 3548-3562.	6.4	38
28	Novel Atypical Antipsychotic Agents:Â Rational Design, an Efficient Palladium-Catalyzed Route, and Pharmacological Studies. Journal of Medicinal Chemistry, 2005, 48, 1705-1708.	6.4	37
29	Pyrrolo[1,3]benzothiazepine-Based Atypical Antipsychotic Agents. Synthesis, Structureâ^Activity Relationship, Molecular Modeling, and Biological Studies. Journal of Medicinal Chemistry, 2002, 45, 344-359.	6.4	36
30	Synthesis and binding properties of novel selective 5-HT3 receptor ligands. Bioorganic and Medicinal Chemistry, 2004, 12, 3891-3901.	3.0	36
31	Overcoming synthetic Al ² peptide aging: a new approach to an age-old problem. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2009, 16, 71-80.	3.0	36
32	Characterization of the 1H-Cyclopentapyrimidine-2,4(1H,3H)-dione Derivative (S)-CPW399 as a Novel, Potent, and Subtype-Selective AMPA Receptor Full Agonist with Partial Desensitization Properties. Journal of Medicinal Chemistry, 2001, 44, 4501-4504.	6.4	35
33	Novel, Potent, and Selective Quinoxaline-Based 5-HT ₃ Receptor Ligands. 1. Further Structureâ^'Activity Relationships and Pharmacological Characterization. Journal of Medicinal Chemistry, 2009, 52, 6946-6950.	6.4	35
34	High affinity and selectivity of [[(arylpiperazinyl)alkyl]thio]thieno[2,3-d]pyrimidinone derivatives for the 5-HT1A receptor.Synthesis and structure–affinity relationships. European Journal of Medicinal Chemistry, 2000, 35, 677-689.	5.5	34
35	New Pyrimido[5,4-b]indoles as Ligands for α1-Adrenoceptor Subtypes. Journal of Medicinal Chemistry, 2003, 46, 2877-2894.	6.4	34
36	Structure–activity relationships and molecular modeling studies of novel arylpiperazinylalkyl 2-benzoxazolones and 2-benzothiazolones as 5-HT7 and 5-HT1A receptor ligands. European Journal of Medicinal Chemistry, 2014, 85, 716-726.	5.5	33

#	Article	IF	CITATIONS
37	Design, synthesis and binding properties of novel and selective 5-HT3 and 5-HT4 receptor ligands. European Journal of Medicinal Chemistry, 2000, 35, 1065-1079.	5.5	32
38	Novel Sigma Receptor Ligands:Â Synthesis and Biological Profile. Journal of Medicinal Chemistry, 2007, 50, 951-961.	6.4	32
39	Good gene, bad gene: New APP variant may be both. Progress in Neurobiology, 2012, 99, 281-292.	5.7	31
40	Functionalization with TAT-Peptide Enhances Blood-Brain Barrier Crossing In vitro of Nanoliposomes Carrying a Curcumin-Derivative to Bind Amyloid-Î' Peptide. Journal of Nanomedicine & Nanotechnology, 2013, 04, .	1.1	31
41	Intrastriatal administration of sigma ligands inhibits basal dopamine release in vivo. Neuropharmacology, 2003, 45, 945-953.	4.1	29
42	[1,2,4]Triazole derivatives as 5-HT1A serotonin receptor ligands. Bioorganic and Medicinal Chemistry, 2002, 10, 313-323.	3.0	27
43	Tackling amyloidogenesis in Alzheimer's disease with A2V variants of Amyloid-β. Scientific Reports, 2016, 6, 20949.	3.3	26
44	Synthesis of 3-Arylpiperazinylalkylpyrrolo[3,2-d]pyrimidine-2,4-dione Derivatives as Novel, Potent, and Selective α1-Adrenoceptor Ligands‡. Journal of Medicinal Chemistry, 2005, 48, 2420-2431.	6.4	25
45	Expression of AMPA and NMDA receptor subunits in the cervical spinal cord of wobbler mice. BMC Neuroscience, 2006, 7, 71.	1.9	25
46	Investigation of Functionalized Poly(<i>N</i> , <i>N</i> â€dimethylacrylamide)â€ <i>block</i> â€polystyrene Nanoparticles As Novel Drug Delivery System to Overcome the Blood–Brain Barrier In Vitro. Macromolecular Bioscience, 2015, 15, 1687-1697.	4.1	24
47	Opioid and sigma receptor studies. New developments in the design of selective sigma ligands. Pure and Applied Chemistry, 2001, 73, 1499-1509.	1.9	23
48	Structure–activity study of 2,3-benzodiazepin-4-ones noncompetitive AMPAR antagonists: Identification of the 1-(4-amino-3-methylphenyl)-3,5-dihydro-7,8-ethylenedioxy-4H-2,3-benzodiazepin-4-one as neuroprotective agent. Bioorganic and Medicinal Chemistry, 2008, 16, 2200-2211.	3.0	23
49	Recombinant human TNF-binding protein-1 (rhTBP-1) treatment delays both symptoms progression and motor neuron loss in the wobbler mouse. Neurobiology of Disease, 2008, 29, 465-476.	4.4	23
50	Humanin Specifically Interacts with Amyloid-β Oligomers and Counteracts Their in vivo Toxicity. Journal of Alzheimer's Disease, 2017, 57, 857-871.	2.6	23
51	Synthesis and binding properties of new long-chain 4-substituted piperazine derivatives as 5-HT1A and 5-HT7 receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1427-1430.	2.2	22
52	Synthesis and molecular modeling of 1H-pyrrolopyrimidine-2,4-dione derivatives as ligands for the $\hat{l}\pm 1$ -adrenoceptors. Bioorganic and Medicinal Chemistry, 2011, 19, 5260-5276.	3.0	21
53	New N- and O-arylpiperazinylalkyl pyrimidines and 2-methylquinazolines derivatives as 5-HT7 and 5-HT1A receptor ligands: Synthesis, structure-activity relationships, and molecular modeling studies. Bioorganic and Medicinal Chemistry, 2017, 25, 1250-1259.	3.0	21
54	In vitro affinity of piribedil for dopamine D3 receptor subtypes, an autoradiographic study. European Journal of Pharmacology, 1996, 313, 63-67.	3.5	20

#	Article	IF	CITATIONS
55	Glial activation and TNFR-I upregulation precedes motor dysfunction in the spinal cord of mnd mice. Cytokine, 2004, 25, 127-135.	3.2	20
56	Identification of amino acid residues critical for the B cell growth-promoting activity of HIV-1 matrix protein p17 variants. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 13-24.	2.4	20
57	In vitro and in vivo effects of the anorectic agent dexfenfluramine on the central serotoninergic neuronal systems of non-human primates. A comparison with the rat. Naunyn-Schmiedeberg's Archives of Pharmacology, 1996, 353, 641-647.	3.0	19
58	Neural precursor-derived astrocytes of wobbler mice induce apoptotic death of motor neurons through reduced glutamate uptake. Experimental Neurology, 2010, 225, 163-172.	4.1	19
59	Tetrahydro-β-carboline-Based Spirocyclic Lactam as Type Il′ β-Turn: Application to the Synthesis and Biological Evaluation of Somatostatine Mimetics. Journal of Organic Chemistry, 2013, 78, 2600-2610.	3.2	19
60	The cell-permeable Aβ1-6A2VTAT(D) peptide reverts synaptopathy induced by Aβ1-42wt. Neurobiology of Disease, 2016, 89, 101-111.	4.4	19
61	Super Resolution Microscopy of SUMO Proteins in Neurons. Frontiers in Cellular Neuroscience, 2019, 13, 486.	3.7	19
62	Design and synthesis of new homo and hetero bis-piperazinyl-1-propanone derivatives as 5-HT7R selective ligands over 5-HT1AR. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4052-4056.	2.2	18
63	Hepatic protoporphyria is associated with a decrease in ligand binding for the mitochondrial benzodiazepine receptors in the liver. Biochemical Pharmacology, 1992, 44, 1159-1164.	4.4	17
64	Neuronal hyperexcitability and seizures are associated with changes in glial–neuronal interactions in the hippocampus of a mouse model of epilepsy with mental retardation. Journal of Neurochemistry, 2010, 115, 1445-1454.	3.9	17
65	The new β amyloid-derived peptide Aβ1–6A2V-TAT(D) prevents Aβ oligomer formation and protects transgenic C. elegans from Aβ toxicity. Neurobiology of Disease, 2016, 88, 75-84.	4.4	17
66	Pyrrolobenzodiazepines and related systems. 2. Synthesis and biological properties of isonoraptazepine derivatives. Journal of Medicinal Chemistry, 1992, 35, 4533-4541.	6.4	16
67	Design, synthesis and binding properties of novel and selective 5-HT3 and 5-HT4 receptor ligands. European Journal of Medicinal Chemistry, 2001, 36, 287-301.	5.5	16
68	3-Arylpiperazinylethyl-1H-pyrrolo[2,3-d]pyrimidine-2,4(3H,7H)-dione derivatives as novel, high-affinity and selective α1-adrenoceptor ligands. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 150-153.	2.2	15
69	High potent and selective arylpiperazine derivatives as ligands for the 5-HT 1A receptor. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 1089-1092.	2.2	14
70	Proteomic Profiling of Cervical and Lumbar Spinal Cord Reveals Potential Protective Mechanisms in the Wobbler Mouse, a Model of Motor Neuron Degeneration. Journal of Proteome Research, 2009, 8, 5229-5240.	3.7	14
71	Potential antidepressant properties of SR 57746A, a novel compound with selectivity and high affinity for 5-HT1A receptors. European Journal of Pharmacology, 1994, 253, 139-147.	3.5	13
72	Lack of caspase-dependent apoptosis in spinal motor neurons of the wobbler mouse. Neuroscience Letters, 2007, 426, 106-110.	2.1	13

#	Article	IF	CITATIONS
73	Interactions of the prion peptide (PrP 106-126) with brain capillary endothelial cells: coordinated cell killing and remodeling of intercellular junctions. Journal of Neurochemistry, 2011, 116, 467-475.	3.9	11
74	N-Terminally Truncated and Pyroglutamate-Modified Aβ Forms Are Measurable in Human Cerebrospinal Fluid and Are Potential Markers of Disease Progression in Alzheimer's Disease. Frontiers in Neuroscience, 2021, 15, 708119.	2.8	9
75	Brain uptake and distribution of the potential memory enhancer CL 275,838 and its main metabolites in rats: relationship between brain concentrations and in vitro potencies on neurotransmitter mechanisms. Psychopharmacology, 1994, 115, 502-508.	3.1	8
76	Myocardialβ-adrenergic and Muscarinic Receptor Density in Cardiac Pressure or Volume Overload. Journal of Molecular and Cellular Cardiology, 1998, 30, 2095-2102.	1.9	8
77	Antitumour drugs targeting tau R3 VQIVYK and Cys322 prevent seeding of endogenous tau aggregates by exogenous seeds. FEBS Journal, 2022, 289, 1929-1949.	4.7	7
78	A reduced calorie-high fiber diet retards age-associated decreases in muscarinic receptor sensitivity. Neurobiology of Aging, 1995, 16, 607-612.	3.1	6
79	Quinolizidinyl derivatives of 2,3-dihydro-2-oxo-1H-benzimidazole-1-carboxylic acid and 1-homolupinanoyl benzimidazolones as ligands for 5-HT3 and 5-HT4 receptors. Il Farmaco, 1999, 54, 248-254.	0.9	6
80	Novel (E)-α-[(1H-indol-3-yl)methylene]benzeneacetic acids as endothelin receptor ligands. Il Farmaco, 2005, 60, 731-738.	0.9	6
81	Synthesis and evaluation of 2-(5-methoxythiophen-3-yl)ethylamines as potential dopamine agonists. European Journal of Medicinal Chemistry, 1994, 29, 423-429.	5.5	5
82	Synthesis and Receptor Binding of New Thieno[2,3â€ <i>d</i>]â€pyrimidines as Selective Ligands of 5â€HT ₃ Receptors. Archiv Der Pharmazie, 2008, 341, 333-343.	4.1	5
83	2-{4-[3-(4-Aryl/heteroaryl-1-piperazinyl)propoxy]phenyl}-2H-benzotriazoles and their N-oxides as ligands for serotonin and dopamine receptors. Il Farmaco, 1999, 54, 402-410.	0.9	4
84	Dimethyl sulfoxide: An antagonist in scintillation proximity assay [35S]-GTPÎ ³ S binding to rat 5-HT6 receptor cloned in HEK-293 cells?. Journal of Neuroscience Methods, 2007, 160, 251-255.	2.5	4
85	[1]Benzothieno[3,2-d]pyrimidine derivatives as ligands for the serotonergic 5-HT7 receptor. European Journal of Medicinal Chemistry, 2019, 183, 111690.	5.5	4
86	Synthesis of 1,2,4-triazole Derivatives: Binding Properties on Endothelin Receptors. Medicinal Chemistry, 2007, 3, 551-560.	1.5	4
87	A facile synthesis of new 2-carboxamido-3-carboxythiophene and 4,5,6,7-tetrahydro-2-carboxamido-3-carboxythieno[2,3-c]pyridine derivatives as potential endothelin receptors ligands. Il Farmaco, 2005, 60, 711-720.	0.9	3
88	Chiral resolution and binding study of 1,3,4,14b-tetrahydro-2,10-dimethyl-2H,10H-pyrazino[2,1-d]pyrrolo[1,2-b] [1,2,5]benzotriazepine (10-methyl-10-azaaptazepine) and 2-methyl-1,3,4,14b-tetrahydro-2H-pyrazino[2,1-d]pyrrolo[1,2-b] [1,2,5]benzothiadiazepine 10,10-dioxide (tiaaptazepine). Il Farmaco, 2005, 60, 931-937.	0.9	3
89	Synthesis and Endothelin Receptor Binding Affinity of a Novel Class of 2-Substituted-4-aryl-3-quinolinecarboxylic Acid Derivatives. Medicinal Chemistry, 2008, 4, 129-137.	1.5	3
90	Acid-catalysed Hydrolysis and Benzodiazepine-like Properties of 5-(Dialkylamino)- and 5-(Alkylthio)-substituted 8-Chloro-6-phenyl-6H-[1,2,4]triazolo[4,3-a][l,5]benzodiazepines in Mice. Journal of Pharmacy and Pharmacology, 2011, 50, 723-728.	2.4	3

#	Article	IF	CITATIONS
91	In-vivo Radiolabelled Oxiracetam Binding to Rat Brain. Journal of Pharmacy and Pharmacology, 2011, 42, 171-174.	2.4	3
92	Nonphosphorylated tau slows down Aβ1–42 aggregation, binds to Aβ1–42 oligomers, and reduces Aβ1–4 toxicity. Journal of Biological Chemistry, 2021, 296, 100664.	¹² 3.4	3
93	Apelin Resistance Contributes to Muscle Loss during Cancer Cachexia in Mice. Cancers, 2022, 14, 1814.	3.7	3
94	Synthesis and Molecular Modelling Studies of New 1,3-Diaryl-5-Oxo-Proline Derivatives as Endothelin Receptor Ligands. Molecules, 2020, 25, 1851.	3.8	2
95	Synthesis and Binding Properties of New Endothelin Receptor Ligands. Letters in Drug Design and Discovery, 2007, 4, 232-238.	0.7	1
96	Synthesis and Endothelin Receptors Binding Affinity of New 1,3,5- Substituted Pyrrole-2-Carboxylic Acid Derivatives. Medicinal Chemistry, 2015, 11, 109-117.	1.5	1
97	Novel (E)-α-[(1H-Indol-3-yl)methylene]benzeneacetic Acids as Endothelin Receptor Ligands ChemInform, 2006, 37, no.	0.0	0
98	A Facile Synthesis of New 2-Carboxamido-3-carboxythiophene and 4,5,6,7-Tetrahydro-2-carboxamido-3-carboxythieno[2,3-c]pyridine Derivatives as Potential Endothelin Receptors Ligands ChemInform, 2006, 37, no.	0.0	0
99	L16â€Identifying a therapeutic regimen for cholesterol delivery to huntington's disease brain. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A95.2-A95.	1.9	0