
Frans E Tax

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3059098/publications.pdf Version: 2024-02-01

FDANS F TAY

#	Article	IF	CITATIONS
1	The Control of Cell Expansion, Cell Division, and Vascular Development by Brassinosteroids: A Historical Perspective. International Journal of Molecular Sciences, 2020, 21, 1743.	4.1	54
2	Two receptorâ€like protein kinases, MUSTACHES and MUSTACHESâ€LIKE, regulate lateral root development in <i>Arabidopsis thaliana</i> . New Phytologist, 2020, 227, 1157-1173.	7.3	27
3	SERK Receptor-like Kinases Control Division Patterns of Vascular Precursors and Ground Tissue Stem Cells during Embryo Development in Arabidopsis. Molecular Plant, 2019, 12, 984-1002.	8.3	26
4	A Common Pathway of Root Growth Control and Response to CLE Peptides Through Two Receptor Kinases in <i>Arabidopsis</i> . Genetics, 2018, 208, 687-704.	2.9	28
5	Lateral root growth in Arabidopsis is controlled by short and long distance signaling through the LRR RLKs XIP1/CEPR1 and CEPR2. Plant Signaling and Behavior, 2018, 13, e1489667.	2.4	17
6	Scanning for New BRI1 Mutations via TILLING Analysis. Plant Physiology, 2017, 174, 1881-1896.	4.8	25
7	The Arabidopsis Leucine-Rich Repeat Receptor Kinase BIR3 Negatively Regulates BAK1 Receptor Complex Formation and Stabilizes BAK1. Plant Cell, 2017, 29, 2285-2303.	6.6	94
8	An Allelic Series of <i>bak1</i> Mutations Differentially Alter <i>bir1</i> Cell Death, Immune Response, Growth, and Root Development Phenotypes in <i>Arabidopsis thaliana</i> . Genetics, 2016, 202, 689-702.	2.9	11
9	Accelerated rates of protein evolution in barley grain and pistil biased genes might be legacy of domestication. Plant Molecular Biology, 2015, 89, 253-261.	3.9	6
10	The receptorâ€like kinases GSO1 and GSO2 together regulate root growth in <i>arabidopsis</i> through control of cell division and cell fate specification. Developmental Dynamics, 2014, 243, 257-278.	1.8	61
11	Evolutionary dynamics of leucineâ€rich repeat receptorâ€like kinases and related genes in plants: A phylogenomic approach. Journal of Integrative Plant Biology, 2014, 56, 648-662.	8.5	12
12	The receptor-like kinases GSO1 and GSO2 together regulate root growth inarabidopsisthrough control of cell division and cell fate specification. Developmental Dynamics, 2014, 243, C1-C1.	1.8	2
13	AtPEPTIDE RECEPTOR2 mediates the AtPEPTIDE1â€induced cytosolic Ca ²⁺ rise, which is required for the suppression of <i>Glutamine Dumper</i> gene expression in <i>Arabidopsis</i> roots. Journal of Integrative Plant Biology, 2014, 56, 684-694.	8.5	20
14	The Leucine-Rich Repeat Receptor Kinase BIR2 Is a Negative Regulator of BAK1 in Plant Immunity. Current Biology, 2014, 24, 134-143.	3.9	219
15	Receptorâ€Like Kinases: Key Regulators of Plant Development and Defense. Journal of Integrative Plant Biology, 2013, 55, 1184-1187.	8.5	42
16	Notes from the Underground: Receptorâ€ <scp>L</scp> ike Kinases in <i>Arabidopsis</i> Root Development. Journal of Integrative Plant Biology, 2013, 55, 1224-1237.	8.5	19
17	Synergistic Interaction of CLAVATA1, CLAVATA2, and RECEPTOR-LIKE PROTEIN KINASE 2 in Cyst Nematode Parasitism of <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2013, 26, 87-96.	2.6	55
18	The tyrosineâ€sulfated peptide receptors PSKR1 and PSY1R modify the immunity of Arabidopsis to biotrophic and necrotrophic pathogens in an antagonistic manner. Plant Journal, 2013, 73, 469-482.	5.7	163

Frans E Tax

#	Article	IF	CITATIONS
19	The Social Network: Receptor Kinases and Cell Fate Determination in Plants. Signaling and Communication in Plants, 2012, , 41-65.	0.7	3
20	XYLEM INTERMIXED WITH PHLOEM1, a leucine-rich repeat receptor-like kinase required for stem growth and vascular development in Arabidopsis thaliana. Planta, 2012, 235, 111-122.	3.2	60
21	A few standing for many: embryo receptor-like kinases. Trends in Plant Science, 2011, 16, 211-217.	8.8	22
22	CLAVATA Signaling Pathway Receptors of <i>Arabidopsis</i> Regulate Cell Proliferation in Fruit Organ Formation as well as in Meristems. Genetics, 2011, 189, 177-194.	2.9	78
23	Partnership for Research & Education in Plants (PREP): Involving High School Students in Authentic Research in Collaboration with Scientists. American Biology Teacher, 2011, 73, 137-142.	0.2	5
24	Intragenic Suppression of a Trafficking-Defective Brassinosteroid Receptor Mutant in Arabidopsis. Genetics, 2010, 185, 1283-1296.	2.9	21
25	PEPR2 Is a Second Receptor for the Pep1 and Pep2 Peptides and Contributes to Defense Responses in <i>Arabidopsis </i> Â. Plant Cell, 2010, 22, 508-522.	6.6	433
26	Two receptor-like kinases required together for the establishment of Arabidopsis cotyledon primordia. Developmental Biology, 2008, 314, 161-170.	2.0	41
27	Prepping Students for Authentic Science. The Science Teacher, 2008, 75, 38-43.	0.1	15
28	Sowing the Seeds of Dialogue: Public Engagement through Plant Science. Plant Cell, 2007, 19, 2311-2319.	6.6	14
29	RPK1 and TOAD2 Are Two Receptor-like Kinases Redundantly Required for Arabidopsis Embryonic Pattern Formation. Developmental Cell, 2007, 12, 943-956.	7.0	137
30	Meristems in the Movies: Live Imaging as a Tool for Decoding Intercellular Signaling in Shoot Apical Meristems. Plant Cell, 2006, 18, 1331-1337.	6.6	9
31	Functional analysis of receptor-like kinases in monocots and dicots. Current Opinion in Plant Biology, 2006, 9, 460-469.	7.1	197
32	CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana. Plant Journal, 2005, 41, 710-721.	5.7	158
33	CLAVATA1 Dominant-Negative Alleles Reveal Functional Overlap between Multiple Receptor Kinases That Regulate Meristem and Organ Development. Plant Cell, 2003, 15, 1198-1211.	6.6	171
34	Two Putative BIN2 Substrates Are Nuclear Components of Brassinosteroid Signaling. Plant Physiology, 2002, 130, 1221-1229.	4.8	219
35	Arabidopsis Brassinosteroid-Insensitive dwarf12Mutants Are Semidominant and Defective in a Glycogen Synthase Kinase 3î²-Like Kinase. Plant Physiology, 2002, 130, 1506-1515.	4.8	150
36	BAK1, an Arabidopsis LRR Receptor-like Protein Kinase, Interacts with BRI1 and Modulates Brassinosteroid Signaling. Cell, 2002, 110, 213-222.	28.9	1,231

Frans E Tax

#	Article	IF	CITATIONS
37	CYP83B1, a Cytochrome P450 at the Metabolic Branch Point in Auxin and Indole Glucosinolate Biosynthesis in Arabidopsis. Plant Cell, 2001, 13, 101.	6.6	44
38	BRS1, a serine carboxypeptidase, regulates BRI1 signaling in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5916-5921.	7.1	210
39	PlantsP: a functional genomics database for plant phosphorylation. Nucleic Acids Research, 2001, 29, 111-113.	14.5	62
40	T-DNA-Associated Duplication/Translocations in Arabidopsis. Implications for Mutant Analysis and Functional Genomics. Plant Physiology, 2001, 126, 1527-1538.	4.8	137
41	Lesions in the sterol Delta7 reductase gene of Arabidopsis cause dwarfism due to a block in brassinosteroid biosynthesis. Plant Journal, 2000, 21, 431-443.	5.7	165
42	Biosynthetic Pathways of Brassinolide in Arabidopsis. Plant Physiology, 2000, 124, 201-210.	4.8	155
43	The Arabidopsis dwarf1 Mutant Is Defective in the Conversion of 24-Methylenecholesterol to Campesterol in Brassinosteroid Biosynthesis1. Plant Physiology, 1999, 119, 897-908.	4.8	227
44	The Arabidopsis dwf7/ste1 Mutant Is Defective in the Δ7 Sterol C-5 Desaturation Step Leading to Brassinosteroid Biosynthesis. Plant Cell, 1999, 11, 207-221.	6.6	193
45	Brassinosteroid-Insensitive Dwarf Mutants of Arabidopsis Accumulate Brassinosteroids. Plant Physiology, 1999, 121, 743-752.	4.8	414
46	The Arabidopsis dwf7/ste1 mutant is defective in the delta7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell, 1999, 11, 207-21.	6.6	161
47	Identification and Characterization of Genes That Interact With <i>lin-12</i> in <i>Caenorhabditis elegans</i> . Genetics, 1997, 147, 1675-1695.	2.9	46
48	Sequence of C. elegans lag-2 reveals a cell-signalling domain shared with Delta and Serrate of Drosophila. Nature, 1994, 368, 150-154.	27.8	266
49	Cell-Cell Interactions: Receiving signals in the nematode embryo. Current Biology, 1994, 4, 914-916.	3.9	12