Johannes Schiffer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/305876/publications.pdf

Version: 2024-02-01

623734 552781 1,706 49 14 26 citations g-index h-index papers 49 49 49 1226 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Voltage Stability and Reactive Power Sharing in Inverter-Based Microgrids With Consensus-Based Distributed Voltage Control. IEEE Transactions on Control Systems Technology, 2016, 24, 96-109.	5.2	360
2	Conditions for stability of droop-controlled inverter-based microgrids. Automatica, 2014, 50, 2457-2469.	5.0	340
3	A survey on modeling of microgrids—From fundamental physics to phasors and voltage sources. Automatica, 2016, 74, 135-150.	5.0	196
4	Online Estimation of Power System Inertia Using Dynamic Regressor Extension and Mixing. IEEE Transactions on Power Systems, 2019, 34, 4993-5001.	6.5	88
5	Robustness of distributed averaging control in power systems: Time delays & Dynamic communication topology. Automatica, 2017, 80, 261-271.	5.0	74
6	Synchronization of droop-controlled microgrids with distributed rotational and electronic generation, , 2013, , .		73
7	Generalized parameter estimation-based observers: Application to power systems and chemical–biological reactors. Automatica, 2021, 129, 109635.	5.0	47
8	Stability of a class of delayed port-Hamiltonian systems with application to microgrids with distributed rotational and electronic generation. Automatica, 2016, 74, 71-79.	5.0	46
9	On stability of a distributed averaging PI frequency and active power controlled differential-algebraic power system model. , 2016, , .		35
10	On power sharing and stability in autonomous inverter-based microgrids. , 2012, , .		29
11	Data-Driven Control for Linear Discrete-Time Delay Systems. IEEE Transactions on Automatic Control, 2022, 67, 3321-3336.	5.7	29
12	Droop-controlled inverter-based microgrids are robust to clock drifts. , 2015, , .		28
13	A Lyapunov approach to control of microgrids with a network-preserved differential-algebraic model. , 2016, , .		28
14	Modeling, Analysis, and Experimental Validation of Clock Drift Effects in Low-Inertia Power Systems. IEEE Transactions on Industrial Electronics, 2017, 64, 5942-5951.	7.9	28
15	A consensus-based distributed voltage control for reactive power sharing in microgrids. , 2014, , .		27
16	Robustness of delayed multistable systems with application to droop-controlled inverter-based microgrids. International Journal of Control, 2016, 89, 909-918.	1.9	26
17	Conditions for Almost Global Attractivity of a Synchronous Generator Connected to an Infinite Bus. IEEE Transactions on Automatic Control, 2017, 62, 4905-4916.	5.7	26
18	A Tool for Analysis of Existence of Equilibria and Voltage Stability in Power Systems With Constant Power Loads. IEEE Transactions on Automatic Control, 2020, 65, 4726-4740.	5.7	20

#	Article	IF	CITATIONS
19	Precise robot motions using dual motor control. , 2010, , .		18
20	Global synchronization analysis of droop-controlled microgridsâ€"A multivariable cell structure approach. Automatica, 2019, 109, 108550.	5.0	18
21	A relaxed characterization of ISS for periodic systems with multiple invariant sets. European Journal of Control, 2017, 37, 1-7.	2.6	14
22	ISS of multistable systems with delays: Application to droop-controlled inverter-based microgrids. , 2015, , .		12
23	Almost global attractivity of a synchronous generator connected to an infinite bus. , 2016, , .		11
24	Stability of Synchronized Motions of Inverter–Based Microgrids Under Droop Control. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 6361-6367.	0.4	10
25	A Tool for Stability and Power-Sharing Analysis of a Generalized Class of Droop Controllers for High-Voltage Direct-Current Transmission Systems. IEEE Transactions on Control of Network Systems, 2018, 5, 1110-1119.	3.7	10
26	Distributed secondary frequency control in microgrids: Robustness and steady-state performance in the presence of clock drifts. European Journal of Control, 2020, 51, 135-145.	2.6	10
27	Synthesizing Sparse and Delay-Robust Distributed Secondary Frequency Controllers for Microgrids. IEEE Transactions on Control Systems Technology, 2021, 29, 691-703.	5.2	10
28	An input-to-state stability approach to verify almost global stability of a synchronous-machine-infinite-bus system. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160304.	3.4	9
29	On Boundedness of Solutions of State Periodic Systems: A Multivariable Cell Structure Approach. IEEE Transactions on Automatic Control, 2019, 64, 4094-4104.	5.7	9
30	Wide-area oscillation damping in low-inertia grids under time-varying communication delays. Electric Power Systems Research, 2020, 189, 106629.	3.6	9
31	Stability of a class of delayed port-Hamiltonian systems with application to droop-controlled microgrids. , 2015, , .		7
32	Finite-Time Estimation of Time-Varying Frequency Signals in Low-Inertia Power Systems. , 2019, , .		7
33	A Performance Comparison of PLL Implementations in Low-Inertia Power Systems Using an Observer-Based Framework. IFAC-PapersOnLine, 2020, 53, 12244-12250.	0.9	7
34	Almost Global Synchronization in Radial Multi-Machine Power Systems. , 2018, , .		6
35	PMUâ€based decentralised mixed algebraic and dynamic state observation in multiâ€machine power systems. IET Generation, Transmission and Distribution, 2020, 14, 6267-6275.	2.5	5
36	Voltage regulation and current sharing for multi-bus DC microgrids: A compromised design approach. Automatica, 2022, 142, 110340.	5.0	5

#	Article	IF	CITATIONS
37	Steady state evaluation of distributed secondary frequency control strategies for microgrids in the presence of clock drifts. , 2017 , , .		4
38	Towards a time-domain modeling framework for small-signal analysis of unbalanced microgrids. , 2017, , .		4
39	A new criterion for boundedness of solutions for a class of periodic systems. , 2018, , .		4
40	Distributed Secondary Frequency Control Design for Microgrids: Trading Off L <inf>2</inf> -Gain Performance and Communication Efforts under Time-Varying Delays. , 2018, , .		3
41	Conditions for Delay-Robust Consensus-Based Frequency Control in Power Systems with Second-Order Turbine-Governor Dynamics. , 2018, , .		3
42	A Port-Hamiltonian Approach to Modeling and Control of an Electro-Thermal Microgrid. IFAC-PapersOnLine, 2021, 54, 287-293.	0.9	3
43	A tool for power flow analysis of a generalized class of droop controllers for high-voltage direct-current transmission systems. , 2016, , .		2
44	Relaxing the conditions of ISS for multistable periodic systems. IFAC-PapersOnLine, 2017, 50, 7217-7222.	0.9	2
45	A Consensus-Based Control Law for Accurate Frequency Restoration and Power Sharing in Microgrids in the Presence of Clock Drifts. , 2018, , .		2
46	A consensus-based voltage control for reactive power sharing and PCC voltage regulation in microgrids with parallel-connected inverters. , 2019, , .		2
47	Delay-Robust Distributed Secondary Frequency Control: A Case Study. , 2019, , .		0
48	State Observation of Power Systems Equipped With Phasor Measurement Units: The Case of Fourth-Order Flux-Decay Model. IEEE Transactions on Automatic Control, 2022, 67, 2123-2130.	5.7	0
49	Robustness of Delayed Multistable Systems. Advances in Delays and Dynamics, 2019, , 83-97.	0.4	O