Robert T Batey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3058308/publications.pdf

Version: 2024-02-01

96 papers

8,062 citations

41344 49 h-index 49909 87 g-index

178 all docs

178 docs citations

178 times ranked

5127 citing authors

#	Article	IF	CITATIONS
1	Regulation of Gene Expression Through Effector-dependent Conformational Switching by Cobalamin Riboswitches. Journal of Molecular Biology, 2022, 434, 167585.	4.2	8
2	The DNA-Binding High-Mobility Group Box Domain of Sox Family Proteins Directly Interacts with RNA <i>In Vitro</i> . Biochemistry, 2022, 61, 943-951.	2.5	9
3	SPRINT: a Cas13a-based platform for detection of small molecules. Nucleic Acids Research, 2020, 48, e101-e101.	14.5	56
4	hnRNPK recognition of the B motif of Xist and other biological RNAs. Nucleic Acids Research, 2020, 48, 9320-9335.	14.5	25
5	High Affinity Binding of N2-Modified Guanine Derivatives Significantly Disrupts the Ligand Binding Pocket of the Guanine Riboswitch. Molecules, 2020, 25, 2295.	3.8	9
6	Small molecule regulated sgRNAs enable control of genome editing in E. coli by Cas9. Nature Communications, 2020, 11, 1394.	12.8	28
7	RNA-Puzzles Round IV: 3D structure predictions of four ribozymes and two aptamers. Rna, 2020, 26, 982-995.	3.5	100
8	The Sox2 transcription factor binds RNA. Nature Communications, 2020, 11, 1805.	12.8	77
9	Spen links RNA-mediated endogenous retrovirus silencing and X chromosome inactivation. ELife, 2020, 9, .	6.0	33
10	Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli. PLoS ONE, 2020, 15, e0243155.	2.5	12
11	Structural basis for $2\hat{a}\in^2$ -deoxyguanosine recognition by the $2\hat{a}\in^2$ -dG-II class of riboswitches. Nucleic Acids Research, 2019, 47, 10931-10941.	14.5	11
12	The glucocorticoid receptor DNA-binding domain recognizes RNA hairpin structures with high affinity. Nucleic Acids Research, 2019, 47, 8180-8192.	14.5	24
13	A functional genetic screen reveals sequence preferences within a key tertiary interaction in cobalamin riboswitches required for ligand selectivity. Nucleic Acids Research, 2018, 46, 9094-9105.	14.5	11
14	A multicolor riboswitch-based platform for imaging of RNA in live mammalian cells. Nature Chemical Biology, 2018, 14, 964-971.	8.0	114
15	Structure–Activity Relationship of Flavin Analogues That Target the Flavin Mononucleotide Riboswitch. ACS Chemical Biology, 2018, 13, 2908-2919.	3.4	49
16	RNA-Puzzles Round III: 3D RNA structure prediction of five riboswitches and one ribozyme. Rna, 2017, 23, 655-672.	3.5	158
17	Recurrent RNA motifs as scaffolds for genetically encodable small-molecule biosensors. Nature Chemical Biology, 2017, 13, 295-301.	8.0	104
18	Cobalamin riboswitches exhibit a broad range of ability to discriminate between methylcobalamin and adenosylcobalamin. Journal of Biological Chemistry, 2017, 292, 11650-11658.	3.4	38

#	Article	IF	CITATIONS
19	Intrinsically disordered RGG/RG domains mediate degenerate specificity in RNA binding. Nucleic Acids Research, 2017, 45, 7984-7996.	14.5	165
20	Mechanistic Insights into Cofactor-Dependent Coupling of RNA Folding and mRNA Transcription/Translation by a Cobalamin Riboswitch. Cell Reports, 2016, 15, 1100-1110.	6.4	36
21	Soaking Hexammine Cations into RNA Crystals to Obtain Derivatives for Phasing Diffraction Data. Methods in Molecular Biology, 2016, 1320, 219-232.	0.9	10
22	Structure-guided Mutational Analysis of Gene Regulation by the Bacillus subtilis pbuE Adenine-responsive Riboswitch in a Cellular Context. Journal of Biological Chemistry, 2015, 290, 4464-4475.	3.4	28
23	Design of Modular "Plug-and-Play―Expression Platforms Derived from Natural Riboswitches for Engineering Novel Genetically Encodable RNA Regulatory Devices. Methods in Enzymology, 2015, 550, 41-71.	1.0	11
24	Metal Ion-Mediated Nucleobase Recognition by the ZTP Riboswitch. Chemistry and Biology, 2015, 22, 829-837.	6.0	44
25	A Highly Coupled Network of Tertiary Interactions in the SAM-I Riboswitch and Their Role in Regulatory Tuning. Journal of Molecular Biology, 2015, 427, 3473-3490.	4.2	10
26	Riboswitches: still a lot of undiscovered country. Rna, 2015, 21, 560-563.	3.5	23
27	Structural basis for diversity in the SAM clan of riboswitches. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6624-6629.	7.1	57
28	A Disconnect between High-Affinity Binding and Efficient Regulation by Antifolates and Purines in the Tetrahydrofolate Riboswitch. Chemistry and Biology, 2014, 21, 205-216.	6.0	45
29	The purine riboswitch as a model system for exploring RNA biology and chemistry. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 919-930.	1.9	29
30	Single-Molecule Conformational Dynamics of a Biologically Functional Hydroxocobalamin Riboswitch. Journal of the American Chemical Society, 2014, 136, 16832-16843.	13.7	40
31	Lariat lessons. Nature, 2014, 514, 173-174.	27.8	0
32	Advances in methods for native expression and purification of RNA for structural studies. Current Opinion in Structural Biology, 2014, 26, 1-8.	5.7	23
33	Nucleotides Adjacent to the Ligand-Binding Pocket are Linked to Activity Tuning in the Purine Riboswitch. Journal of Molecular Biology, 2013, 425, 1596-1611.	4.2	50
34	Modularity of Select Riboswitch Expression Platforms Enables Facile Engineering of Novel Genetic Regulatory Devices. ACS Synthetic Biology, 2013, 2, 463-472.	3.8	105
35	Engineering modular â€~ON' RNA switches using biological components. Nucleic Acids Research, 2013, 41, 10449-10461.	14.5	83
36	Structure and mechanism of purine-binding riboswitches. Quarterly Reviews of Biophysics, 2012, 45, 345-381.	5.7	70

#	Article	IF	CITATIONS
37	B12 cofactors directly stabilize an mRNA regulatory switch. Nature, 2012, 492, 133-137.	27.8	171
38	Single-Molecule Studies of the Lysine Riboswitch Reveal Effector-Dependent Conformational Dynamics of the Aptamer Domain. Biochemistry, 2012, 51, 9223-9233.	2.5	45
39	Insights into the Regulatory Landscape of the Lysine Riboswitch. Journal of Molecular Biology, 2012, 423, 17-33.	4.2	38
40	Riboswitches: Structures and Mechanisms. Cold Spring Harbor Perspectives in Biology, 2011, 3, a003533-a003533.	5 . 5	295
41	The Structure of a Tetrahydrofolate-Sensing Riboswitch Reveals Two Ligand Binding Sites in a Single Aptamer. Structure, 2011, 19, 1413-1423.	3.3	117
42	Recognition of <i>>S</i> àêedenosylmethionine by riboswitches. Wiley Interdisciplinary Reviews RNA, 2011, 2, 299-311.	6.4	54
43	Novel Ligands for a Purine Riboswitch Discovered by RNA-Ligand Docking. Chemistry and Biology, 2011, 18, 324-335.	6.0	93
44	Molecular sensing by the aptamer domain of the FMN riboswitch: a general model for ligand binding by conformational selection. Nucleic Acids Research, 2011, 39, 8586-8598.	14.5	95
45	Free State Conformational Sampling of the SAM-I Riboswitch Aptamer Domain. Structure, 2010, 18, 787-797.	3.3	167
46	Structural basis for recognition of <i>S</i> -adenosylhomocysteine by riboswitches. Rna, 2010, 16, 2144-2155.	3.5	72
47	Discrimination between Closely Related Cellular Metabolites by the SAM-I Riboswitch. Journal of Molecular Biology, 2010, 396, 761-772.	4.2	65
48	Preparation of Group I Introns for Biochemical Studies and Crystallization Assays by Native Affinity Purification. PLoS ONE, 2009, 4, e6740.	2.5	8
49	Analysis of a Critical Interaction within the Archaeal Box C/D Small Ribonucleoprotein Complex. Journal of Biological Chemistry, 2009, 284, 15317-15324.	3.4	4
50	Telomere capping proteins are structurally related to RPA with an additional telomere-specific domain. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19298-19303.	7.1	62
51	Adaptive Ligand Binding by the Purine Riboswitch in the Recognition of Guanine and Adenine Analogs. Structure, 2009, 17, 857-868.	3.3	112
52	A switch in time: Detailing the life of a riboswitch. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2009, 1789, 584-591.	1.9	83
53	A Structural Basis for the Recognition of 2′-Deoxyguanosine by the Purine Riboswitch. Journal of Molecular Biology, 2009, 385, 938-948.	4.2	58
54	Monitoring RNA–Ligand Interactions Using Isothermal Titration Calorimetry. Methods in Molecular Biology, 2009, 540, 97-114.	0.9	39

#	Article	IF	CITATIONS
55	Strategies in RNA Crystallography. Methods in Enzymology, 2009, 469, 119-139.	1.0	50
56	Determining Structures of RNA Aptamers and Riboswitches by X-Ray Crystallography. Methods in Molecular Biology, 2009, 535, 135-163.	0.9	42
57	Beyond Crystallography: Investigating the Conformational Dynamics of the Purine Riboswitch. Springer Series in Biophysics, 2009, , 215-228.	0.4	2
58	Riboswitches: Emerging Themes in RNA Structure and Function. Annual Review of Biophysics, 2008, 37, 117-133.	10.0	346
59	Structure of the SAM-II riboswitch bound to S-adenosylmethionine. Nature Structural and Molecular Biology, 2008, 15, 177-182.	8.2	229
60	Ligand-dependent folding of the three-way junction in the purine riboswitch. Rna, 2008, 14, 675-684.	3.5	91
61	Crystal Structure of the Lysine Riboswitch Regulatory mRNA Element. Journal of Biological Chemistry, 2008, 283, 22347-22351.	3.4	168
62	Structural insights into metaboliteâ€sensing mRNAs. FASEB Journal, 2008, 22, 259.1.	0.5	0
63	Improved native affinity purification of RNA. Rna, 2007, 13, 1384-1389.	3.5	106
64	Mutational Analysis of the Purine Riboswitch Aptamer Domain. Biochemistry, 2007, 46, 13297-13309.	2.5	83
65	A General Strategy to Solve the Phase Problem in RNA Crystallography. Structure, 2007, 15, 761-772.	3.3	111
66	Structural studies of ligand binding by mRNA riboswitches. FASEB Journal, 2007, 21, A41.	0.5	0
67	Modified Pyrimidines Specifically Bind the Purine Riboswitch. Journal of the American Chemical Society, 2006, 128, 14214-14215.	13.7	80
68	Mix-and-Match Riboswitches. ACS Chemical Biology, 2006, 1, 751-754.	3.4	40
69	Thermodynamic and Kinetic Characterization of Ligand Binding to the Purine Riboswitch Aptamer Domain. Journal of Molecular Biology, 2006, 359, 754-768.	4.2	246
70	Erratum to "Thermodynamic and Kinetic Characterization of Ligand Binding to the Purine Riboswitch Aptamer Domain―[J. Mol. Biol. 359 (2006) 754–768]. Journal of Molecular Biology, 2006, 363, 624.	4.2	1
71	Structural Studies of the Purine and SAM Binding Riboswitches. Cold Spring Harbor Symposia on Quantitative Biology, 2006, 71, 259-268.	1.1	30
72	Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature, 2006, 441, 1172-1175.	27.8	375

#	Article	IF	CITATIONS
73	Riboswitches: Fold and Function. Chemistry and Biology, 2006, 13, 805-807.	6.0	37
74	Structures of regulatory elements in mRNAs. Current Opinion in Structural Biology, 2006, 16, 299-306.	5.7	57
75	The bipartite architecture of the sRNA in an archaeal box C/D complex is a primary determinant of specificity. Nucleic Acids Research, 2006, 34, 5039-5051.	14.5	18
76	Riboswitches: natural SELEXion. Cellular and Molecular Life Sciences, 2005, 62, 2401-2404.	5.4	12
77	Structure of a class II TrmH tRNA-modifying enzyme fromAquifex aeolicus. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 722-728.	0.7	23
78	A general method for rapid and nondenaturing purification of RNAs. Rna, 2004, 10, 988-995.	3.5	72
79	Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature, 2004, 432, 411-415.	27.8	471
80	Curse of the Hairpin Loop. Structure, 2004, 12, 731-732.	3.3	2
81	Structural Insights Into the Signal Recognition Particle. Annual Review of Biochemistry, 2004, 73, 539-557.	11.1	123
82	Quantitation of free energy profiles in RNA-ligand interactions by nucleotide analog interference mapping. Rna, 2003, 9, 1282-1289.	3.5	11
83	Structural and Energetic Analysis of Metal Ions Essential to SRP Signal Recognition Domain Assemblyâ€. Biochemistry, 2002, 41, 11703-11710.	2.5	42
84	Structural and energetic analysis of RNA recognition by a universally conserved protein from the signal recognition particle. Journal of Molecular Biology, 2001, 307, 229-246.	4.2	89
85	Large-Scale Purification of a Stable Form of Recombinant Tobacco Etch Virus Protease. BioTechniques, 2001, 30, 544-554.	1.8	113
86	A universal mode of helix packing in RNA. Nature Structural Biology, 2001, 8, 339-343.	9.7	228
87	Crystal Structure of the Ribonucleoprotein Core of the Signal Recognition Particle. Science, 2000, 287, 1232-1239.	12.6	369
88	Tertiary Motifs in RNA Structure and Folding. Angewandte Chemie - International Edition, 1999, 38, 2326-2343.	13.8	393
89	The parallel universe of RNA folding. Nature Structural Biology, 1998, 5, 337-340.	9.7	20
90	Effects of polyvalent cations on the folding of an rRNA three-way junction and binding of ribosomal protein S15. Rna, 1998, 4, 984-997.	3.5	63

ROBERT T BATEY

#	Article	IF	CITATION
91	Interaction of theBacillus stearothermophilusRibosomal Protein S15 with 16 S rRNA: I. Defining the Minimal RNA Site. Journal of Molecular Biology, 1996, 261, 536-549.	4.2	70
92	Interaction of theBacillus stearothermophilusRibosomal Protein S15 with 16 S rRNA: II. Specificity Determinants of RNA-Protein Recognition. Journal of Molecular Biology, 1996, 261, 550-567.	4.2	54
93	Improved large scale culture of Methylophilus methylotrophus for 13C/15N labeling and random fractional deuteration of ribonucleotides. Nucleic Acids Research, 1996, 24, 4836-4837.	14.5	25
94	[13] Preparation of isotopically enriched RNAs for heteronuclear NMR. Methods in Enzymology, 1995, 261, 300-322.	1.0	137
95	Preparation of isotopically labeled ribonucleotides for multidimensional NMR spectroscopy of RNA. Nucleic Acids Research, 1992, 20, 4515-4523.	14.5	288
96	Comparison of operator-specific and nonspecific DNA binding of the .lambda. cl repressor: [KCl] and pH effects. Biochemistry, 1991, 30, 6677-6688.	2.5	56