Felipe A Court

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3058123/publications.pdf

Version: 2024-02-01

62 5,929 33 61 g-index
67 67 67 11340

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	A \hat{l}^2 oligomers trigger necroptosis-mediated neurodegeneration via microglia activation in Alzheimerâ ϵ ™s disease. Acta Neuropathologica Communications, 2022, 10, 31.	5.2	28
2	Dementia in Latin America: Paving the way toward a regional action plan. Alzheimer's and Dementia, 2021, 17, 295-313.	0.8	68
3	Enhanced Activity of Exportin-1/CRM1 in Neurons Contributes to Autophagy Dysfunction and Senescent Features in Old Mouse Brain. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-22.	4.0	9
4	New insights on the molecular mechanisms of collateral sprouting after peripheral nerve injury. Neural Regeneration Research, 2021, 16, 1760.	3.0	4
5	The necroptosis machinery mediates axonal degeneration in a model of Parkinson disease. Cell Death and Differentiation, 2020, 27, 1169-1185.	11.2	71
6	Axonal Degeneration in AD: The Contribution of ${\rm A\hat{l}^2}$ and Tau. Frontiers in Aging Neuroscience, 2020, 12, 581767.	3.4	28
7	Schwann cell reprogramming into repair cells increases exosome-loaded miRNA-21 promoting axonal growth. Journal of Cell Science, 2020, 133, .	2.0	46
8	The necroptosis pathway and its role in age-related neurodegenerative diseases: will it open up new therapeutic avenues in the next decade?. Expert Opinion on Therapeutic Targets, 2020, 24, 679-693.	3.4	13
9	Ex Vivo Analysis of Axonal Degeneration Using Sciatic and Optic Nerve Preparations. Methods in Molecular Biology, 2020, 2143, 179-189.	0.9	O
10	The p75NTR neurotrophin receptor is required to organize the mature neuromuscular synapse by regulating synaptic vesicle availability. Acta Neuropathologica Communications, 2019, 7, 147.	5.2	13
11	Altered mitochondrial bioenergetics are responsible for the delay in Wallerian degeneration observed in neonatal mice. Neurobiology of Disease, 2019, 130, 104496.	4.4	15
12	Axonal Degeneration Is Mediated by Necroptosis Activation. Journal of Neuroscience, 2019, 39, 3832-3844.	3.6	49
13	Compartmentalized necroptosis activation in excitotoxicity-induced axonal degeneration: a novel mechanism implicated in neurodegenerative disease pathology. Neural Regeneration Research, 2019, 14, 1385.	3.0	7
14	A dual role for Integrin $\hat{l}\pm6\hat{l}^24$ in modulating hereditary neuropathy with liability to pressure palsies. Journal of Neurochemistry, 2018, 145, 245-257.	3.9	11
15	In Vitro Analysis of the Role of Schwann Cells on Axonal Degeneration and Regeneration Using Sensory Neurons from Dorsal Root Ganglia. Methods in Molecular Biology, 2018, 1739, 255-267.	0.9	4
16	Purification of Exosomes from Primary Schwann Cells, RNA Extraction, and Next-Generation Sequencing of Exosomal RNAs. Methods in Molecular Biology, 2018, 1739, 299-315.	0.9	15
17	Teased Fiber Preparation of Myelinated Nerve Fibers from Peripheral Nerves for Vital Dye Staining and Immunofluorescence Analysis. Methods in Molecular Biology, 2018, 1739, 329-337.	0.9	6
18	Axonal degeneration induced by glutamate-excitotoxicity is mediated by necroptosis. Journal of Cell Science, 2018, 131, .	2.0	53

#	Article	IF	CITATIONS
19	The inhibition of CTGF/CCN2 activity improves muscle and locomotor function in a murine ALS model. Human Molecular Genetics, 2018, 27, 2913-2926.	2.9	29
20	Molecular analysis of axonal-intrinsic and glial-associated co-regulation of axon degeneration. Cell Death and Disease, 2017, 8, e3166-e3166.	6.3	41
21	Herpes Simplex Virus Type 1 Neuronal Infection Perturbs Golgi Apparatus Integrity through Activation of Src Tyrosine Kinase and Dyn-2 GTPase. Frontiers in Cellular and Infection Microbiology, 2017, 7, 371.	3.9	25
22	Axonal Degeneration during Aging and Its Functional Role in Neurodegenerative Disorders. Frontiers in Neuroscience, 2017, 11, 451.	2.8	139
23	Resistance of leukemia cells to cytarabine chemotherapy is mediated by bone marrow stroma, involves cell-surface equilibrative nucleoside transporter-1 removal and correlates with patient outcome. Oncotarget, 2017, 8, 23073-23086.	1.8	32
24	Injury to the nervous system: A look into the ER. Brain Research, 2016, 1648, 617-625.	2.2	23
25	Schwann Cell and Axon: An Interlaced Unit—From Action Potential to Phenotype Expression. Advances in Experimental Medicine and Biology, 2016, 949, 183-201.	1.6	8
26	Origin of axonal proteins: Is the axonâ€schwann cell unit a functional syncytium?. Cytoskeleton, 2016, 73, 629-639.	2.0	22
27	Activation of the unfolded protein response promotes axonal regeneration after peripheral nerve injury. Scientific Reports, 2016, 6, 21709.	3.3	76
28	Schwann Cell Exosomes Mediate Neuron–Glia Communication and Enhance Axonal Regeneration. Cellular and Molecular Neurobiology, 2016, 36, 429-436.	3.3	82
29	Axons provide the secretory machinery for trafficking of voltage-gated sodium channels in peripheral nerve. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1823-1828.	7.1	39
30	Bursting the unfolded protein response accelerates axonal regeneration. Neural Regeneration Research, 2016, 11, 892.	3.0	3
31	Altered potassium channel distribution and composition in myelinated axons suppresses hyperexcitability following injury. ELife, 2016, 5, e12661.	6.0	43
32	Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. Journal of Extracellular Vesicles, 2015, 4, 30087.	12.2	1,020
33	Functional Role of the Disulfide Isomerase ERp57 in Axonal Regeneration. PLoS ONE, 2015, 10, e0136620.	2.5	70
34	ApoER2 and Reelin are expressed in regenerating peripheral nerve and regulate Schwann cell migration by activating the Rac1 GEF protein, Tiam1. Molecular and Cellular Neurosciences, 2015, 69, 1-11.	2.2	19
35	Calcium Release from Intra-Axonal Endoplasmic Reticulum Leads to Axon Degeneration through Mitochondrial Dysfunction. Journal of Neuroscience, 2014, 34, 7179-7189.	3.6	147
36	Emerging Roles of Extracellular Vesicles in the Nervous System. Journal of Neuroscience, 2014, 34, 15482-15489.	3.6	219

#	Article	IF	Citations
37	Schwann cellâ€derived exosomes enhance axonal regeneration in the peripheral nervous system. Glia, 2013, 61, 1795-1806.	4.9	314
38	Diapause Formation and Downregulation of Insulin-Like Signaling via DAF-16/FOXO Delays Axonal Degeneration and Neuronal Loss. PLoS Genetics, 2012, 8, e1003141.	3.5	59
39	Transfer of Vesicles From Schwann Cells to Axons: a Novel Mechanism of Communication in the Peripheral Nervous System. Frontiers in Physiology, 2012, 3, 205.	2.8	75
40	Mitochondria as a central sensor for axonal degenerative stimuli. Trends in Neurosciences, 2012, 35, 364-372.	8.6	181
41	A BAX/BAK and Cyclophilin D-Independent Intrinsic Apoptosis Pathway. PLoS ONE, 2012, 7, e37782.	2.5	33
42	Morphological evidence for a transport of ribosomes from Schwann cells to regenerating axons. Glia, 2011, 59, 1529-1539.	4.9	99
43	MMP2-9 Cleavage of Dystroglycan Alters the Size and Molecular Composition of Schwann Cell Domains. Journal of Neuroscience, 2011, 31, 12208-12217.	3.6	43
44	Axonal Degeneration Is Mediated by the Mitochondrial Permeability Transition Pore. Journal of Neuroscience, 2011, 31, 966-978.	3.6	182
45	BAX inhibitor-1 regulates autophagy by controlling the IRE1 $\hat{l}\pm$ branch of the unfolded protein response. EMBO Journal, 2011, 30, 4465-4478.	7.8	105
46	Slow axoplasmic transport under scrutiny. Biological Research, 2011, 44, 311-321.	3.4	8
47	XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes and Development, 2009, 23, 2294-2306.	5.9	463
48	A Laminin-2, Dystroglycan, Utrophin Axis Is Required for Compartmentalization and Elongation of Myelin Segments. Journal of Neuroscience, 2009, 29, 3908-3919.	3.6	61
49	Remodeling of motor nerve terminals in demyelinating axons of periaxinâ€null mice. Glia, 2008, 56, 471-479.	4.9	28
50	Schwann Cell to Axon Transfer of Ribosomes: Toward a Novel Understanding of the Role of Glia in the Nervous System. Journal of Neuroscience, 2008, 28, 11024-11029.	3.6	199
51	Identity, developmental restriction and reactivity of extralaminar cells capping mammalian neuromuscular junctions. Journal of Cell Science, 2008, 121, 3901-3911.	2.0	63
52	Â6Â4 Integrin and Dystroglycan Cooperate to Stabilize the Myelin Sheath. Journal of Neuroscience, 2008, 28, 6714-6719.	3.6	78
53	Abrogation of Prostaglandin E2/EP4 Signaling Impairs the Development of rag1+ Lymphoid Precursors in the Thymus of Zebrafish Embryos. Journal of Immunology, 2007, 179, 357-364.	0.8	25
	11 the Hymas of Zeoransii Emoryos. Journal of Hillianology, 2007, 179, 337 30 1.		

FELIPE A COURT

#	Article	IF	CITATIONS
55	Local regulation of the axonal phenotype, a case of merotrophism. Biological Research, 2005, 38, 365.	3.4	22
56	Neurofascins Are Required to Establish Axonal Domains for Saltatory Conduction. Neuron, 2005, 48, 737-742.	8.1	306
57	Local regulation of the axonal phenotype, a case of merotrophism. Biological Research, 2005, 38, 365-74.	3.4	11
58	Progressive abnormalities in skeletal muscle and neuromuscular junctions of transgenic mice expressing the Huntington's disease mutation. European Journal of Neuroscience, 2004, 20, 3092-3114.	2.6	151
59	Restricted growth of Schwann cells lacking Cajal bands slows conduction in myelinated nerves. Nature, 2004, 431, 191-195.	27.8	187
60	Implications of demyelination for the structure and function of the neuromuscular junction. , 2002, , $12\text{-}14$.		0
61	Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nature Neuroscience, 2001, 4, 1199-1206.	14.8	661
62	Nerve regeneration in Wlds mice is normalized by actinomycin D. Brain Research, 2000, 867, 1-8.	2.2	18