
Robert K Colwell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3058026/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Language and ethnobiological skills decline precipitously in Papua New Guinea, the world's most linguistically diverse nation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
2	Spatial scale and the synchrony of ecological disruption. Nature, 2021, 599, E8-E10.	13.7	6
3	The arboreal ants of a Neotropical rain forest show high species density and comprise one third of the ant fauna. Biotropica, 2020, 52, 675-685.	0.8	9
4	Quantifying sample completeness and comparing diversities among assemblages. Ecological Research, 2020, 35, 292-314.	0.7	141
5	Proportional mixture of two rarefaction/extrapolation curves to forecast biodiversity changes under landscape transformation. Ecology Letters, 2019, 22, 1913-1922.	3.0	11
6	Humboldt's enigma: What causes global patterns of mountain biodiversity?. Science, 2019, 365, 1108-1113.	6.0	505
7	Building mountain biodiversity: Geological and evolutionary processes. Science, 2019, 365, 1114-1119.	6.0	415
8	The distributions of morphologically specialized hummingbirds coincide with floral trait matching across an Andean elevational gradient. Biotropica, 2019, 51, 205-218.	0.8	35
9	Drivers of geographical patterns of North American language diversity. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190242.	1.2	18
10	Moth body size increases with elevation along a complete tropical elevational gradient for two hyperdiverse clades. Ecography, 2019, 42, 632-642.	2.1	40
11	Mechanism, Process, and Causation in Ecological Models: A Reply to McGill and Potochnik. Trends in Ecology and Evolution, 2018, 33, 305-306.	4.2	2
12	Managing consequences of climateâ€driven species redistribution requires integration of ecology, conservation and social science. Biological Reviews, 2018, 93, 284-305.	4.7	154
13	Response to Qian etÂal. (2017): Daily and seasonal climate variations are both critical in the evolution of species' elevational range size. Journal of Biogeography, 2018, 45, 2832-2836.	1.4	1
14	Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. Science, 2018, 361, .	6.0	260
15	Processâ€based modelling shows how climate and demography shape language diversity. Global Ecology and Biogeography, 2017, 26, 584-591.	2.7	22
16	Seen once or more than once: applying Good–Turing theory to estimate species richness using only unique observations and a species list. Methods in Ecology and Evolution, 2017, 8, 1221-1232.	2.2	31
17	Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 2017, 355, .	6.0	2,026
18	Environment-induced changes in selective constraints on social learning during the peopling of the Americas. Scientific Reports, 2017, 7, 44431.	1.6	16

#	Article	IF	CITATIONS
19	Elevational species richness gradients in a hyperdiverse insect taxon: a global metaâ€study on geometrid moths. Global Ecology and Biogeography, 2017, 26, 412-424.	2.7	83
20	Process, Mechanism, and Modeling in Macroecology. Trends in Ecology and Evolution, 2017, 32, 835-844.	4.2	119
21	Deciphering the enigma of undetected species, phylogenetic, and functional diversity based on Goodâ€īuring theory. Ecology, 2017, 98, 2914-2929.	1.5	17
22	Mobile hotspots and refugia of avian diversity in the mountains of southâ€west China under past and contemporary global climate change. Journal of Biogeography, 2017, 44, 615-626.	1.4	48
23	Turning Up the Heat on a Hotspot: DNA Barcodes Reveal 80% More Species of Geometrid Moths along an Andean Elevational Gradient. PLoS ONE, 2016, 11, e0150327.	1.1	61
24	Midpoint attractors and species richness: Modelling the interaction between environmental drivers and geometric constraints. Ecology Letters, 2016, 19, 1009-1022.	3.0	75
25	Seasonal and daily climate variation have opposite effects on species elevational range size. Science, 2016, 351, 1437-1439.	6.0	97
26	Statistical Analysis of Paradigmatic Class Richness Supports Greater Paleoindian Projectile-Point Diversity in the Southeast. American Antiquity, 2016, 81, 174-192.	0.6	44
27	An estimate of the number of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7472-7477.	3.3	335
28	Ecological and biogeographic null hypotheses for comparing rarefaction curves. Ecological Monographs, 2015, 85, 437-455.	2.4	42
29	Unveiling the speciesâ€rank abundance distribution by generalizing the Goodâ€Turing sample coverage theory. Ecology, 2015, 96, 1189-1201.	1.5	70
30	EstimateS turns 20: statistical estimation of species richness and shared species from samples, with nonâ€parametric extrapolation. Ecography, 2014, 37, 609-613.	2.1	207
31	Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5610-5615.	3.3	906
32	Defining and observing stages of climate-mediated range shifts in marine systems. Global Environmental Change, 2014, 26, 27-38.	3.6	207
33	Understanding historical and current patterns of species richness of babblers along a 5000â€m subtropical elevational gradient. Global Ecology and Biogeography, 2014, 23, 1167-1176.	2.7	34
34	Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 2014, 84, 45-67.	2.4	2,397
35	How Ants Drop Out: Ant Abundance on Tropical Mountains. PLoS ONE, 2014, 9, e104030.	1.1	41
36	Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains. Journal of Biogeography, 2013, 40, 2310-2323.	1.4	83

#	Article	IF	CITATIONS
37	Toward a Mechanistic Understanding of Linguistic Diversity. BioScience, 2013, 63, 524-535.	2.2	62
38	Quantifying temporal change in biodiversity: challenges and opportunities. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20121931.	1.2	178
39	Coextinction and Persistence of Dependent Species in a Changing World. Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 183-203.	3.8	204
40	Estimating the Richness of a Population When the Maximum Number of Classes Is Fixed: A Nonparametric Solution to an Archaeological Problem. PLoS ONE, 2012, 7, e34179.	1.1	46
41	Specimenâ€Based Modeling, Stopping Rules, and the Extinction of the Ivoryâ€Billed Woodpecker. Conservation Biology, 2012, 26, 47-56.	2.4	29
42	Density compensation, species composition, and richness of ants on a neotropical elevational gradient. Ecosphere, 2011, 2, art29.	1.0	89
43	A novel statistical method for classifying habitat generalists and specialists. Ecology, 2011, 92, 1332-1343.	1.5	203
44	Resolution of Respect: Lawrence B. Slobodkin 1928–2009. Bulletin of the Ecological Society of America, 2011, 92, 19-32.	0.2	1
45	Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecology Letters, 2011, 14, 1236-1245.	3.0	214
46	Species loss revisited. Nature, 2011, 473, 288-289.	13.7	15
47	Beta diversity: synthesis and a guide for the perplexed. Ecography, 2010, 33, 1-1.	2.1	140
48	A stochastic, evolutionary model for range shifts and richness on tropical elevational gradients under Quaternary glacial cycles. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3695-3707.	1.8	77
49	Hutchinson's duality: The once and future niche. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19651-19658.	3.3	534
50	Elevational Patterns of Diversity and Abundance of Eusocial Paper Wasps (Vespidae) in Costa Rica. Biotropica, 2009, 41, 338-346.	0.8	41
51	Patterns and causes of species richness: a general simulation model for macroecology. Ecology Letters, 2009, 12, 873-886.	3.0	286
52	Vulnerability and Resilience of Tropical Forest Species to Landâ€Use Change. Conservation Biology, 2009, 23, 1438-1447.	2.4	90
53	Sufficient sampling for asymptotic minimum species richness estimators. Ecology, 2009, 90, 1125-1133.	1.5	420
54	The sixth mass coextinction: are most endangered species parasites and mutualists?. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3037-3045.	1.2	420

#	Article	IF	Citations
55	Correlates of extinction proneness in tropical angiosperms. Diversity and Distributions, 2008, 14, 1-10.	1.9	106

RangeModel: tools for exploring and assessing geometric constraints on species richness (the) Tj ETQq0 0 0 rgBT /Qverlock 10_{54} Tf 50 702 2.1 56

57	Global Warming, Elevational Range Shifts, and Lowland Biotic Attrition in the Wet Tropics. Science, 2008, 322, 258-261.	6.0	1,045
58	Distribution of megabenthic gastropods along environmental gradients: the mid-domain effect and beyond. Marine Ecology - Progress Series, 2008, 367, 193-202.	0.9	11
59	Predicting continental-scale patterns of bird species richness with spatially explicit models. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 165-174.	1.2	271
60	Species Richness and Evolutionary Niche Dynamics: A Spatial Pattern–Oriented Simulation Experiment. American Naturalist, 2007, 170, 602-616.	1.0	147
61	A COMPARISON OF TAXON CO-OCCURRENCE PATTERNS FOR MACRO- AND MICROORGANISMS. Ecology, 2007, 88, 1345-1353.	1.5	223
62	A strong Madagascan rainforest MDE and no equatorward increase in species richness: re-analysis of ?The missing Madagascan mid-domain effect?, by Kerr J.T., Perring M. & Currie D.J. (Ecology Letters) Tj ETQq0 0 0	rg & ∂/Ove	rlouek 10 Tf 5
63	The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Global Ecology and Biogeography, 2007, 16, 205-219.	2.7	168

64	The river domain: why are there more species halfway up the river?. Ecography, 2006, 29, 251-259.	2.1	46
65	Abundance-Based Similarity Indices and Their Estimation When There Are Unseen Species in Samples. Biometrics, 2006, 62, 361-371.	0.8	474
66	Vascular epiphyte distribution patterns: explaining the mid-elevation richness peak. Journal of Ecology, 2006, 94, 144-156.	1.9	223
67	Microbial biogeography: putting microorganisms on the map. Nature Reviews Microbiology, 2006, 4, 102-112.	13.6	2,434
68	Species richness and distribution of ferns along an elevational gradient in Costa Rica. American Journal of Botany, 2006, 93, 73-83.	0.8	109
69	Estimating the Species Accumulation Curve Using Mixtures. Biometrics, 2005, 61, 433-441.	0.8	111
70	Species Loss and Aboveground Carbon Storage in a Tropical Forest. Science, 2005, 310, 1029-1031.	6.0	390
71	ESTIMATION OF SPECIES RICHNESS: MIXTURE MODELS, THE ROLE OF RARE SPECIES, AND INFERENTIAL CHALLENGES. Ecology, 2005, 86, 1143-1153.	1.5	116
	THE INFLUENCE OF BAND SUM AREA. DOMAIN EXTENT, AND RANGE SIZES ON THE LATITUDINAL MID-DOMAIN		

OMAIN EXTENT, AND RANGE SIZES ON THE LATTUDINAL MID-DOMAIN EFFECT. Ecology, 2005, 86, 235-244. 72 1.5 36

#	Article	IF	CITATIONS
73	The coincidence of rarity and richness and the potential signature of history in centres of endemism. Ecology Letters, 2004, 7, 1180-1191.	3.0	304
74	A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters, 2004, 8, 148-159.	3.0	1,470
75	The Midâ€Domain Effect and Species Richness Patterns:What Have We Learned So Far?. American Naturalist, 2004, 163, E1-E23.	1.0	484
76	Species Coextinctions and the Biodiversity Crisis. Science, 2004, 305, 1632-1634.	6.0	505
77	INTERPOLATING, EXTRAPOLATING, AND COMPARING INCIDENCE-BASED SPECIES ACCUMULATION CURVES. Ecology, 2004, 85, 2717-2727.	1.5	1,366
78	THE ANT FAUNA OF A TROPICAL RAIN FOREST: ESTIMATING SPECIES RICHNESS THREE DIFFERENT WAYS. Ecology, 2002, 83, 689-702.	1.5	456
79	Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 2001, 4, 379-391.	3.0	4,953
80	Virtual Biodiversity Assessment Systems. BioScience, 2000, 50, 441.	2.2	29
81	BIODIVERSITY ASSESSMENT USING STRUCTURED INVENTORY: CAPTURING THE ANT FAUNA OF A TROPICAL RAIN FOREST. , 1997, 7, 1263-1277.		239
82	New Genus and Two New Species of Melicharini from Venezuela (Acari: Mesostigmata: Ascidae). Annals of the Entomological Society of America, 1995, 88, 284-293.	1.3	12
83	<i>Excelsotarsonemus kaliszewskii</i> , a new genus and new species from Costa Rica (Acari:) Tj ETQq1 1 0.784	314 rgBT /	Overlock 10
84	Nonbiological Gradients in Species Richness and a Spurious Rapoport Effect. American Naturalist, 1994, 144, 570-595.	1.0	562
85	Cellulose acetate electrophoretic techniques for the genetic analysis of individual ascid mites (Mesostigmata: Ascidae). International Journal of Acarology, 1992, 18, 97-105.	0.3	6
86	Detection and Identification of Mammalian DNA from the Gut of Museum Specimens of Ticks. Journal of Medical Entomology, 1992, 29, 1049-1051.	0.9	29
87	The Planned Introduction of Genetically Engineered Organisms: Ecological Considerations and Recommendations. Ecology, 1989, 70, 298-315.	1.5	537
88	The Evolution of Ecology. American Zoologist, 1985, 25, 771-777.	0.7	23
89	Female-biased sex ratios (reply). Nature, 1982, 298, 495-496.	13.7	9
90	Group selection is implicated in the evolution of female-biased sex ratios. Nature, 1981, 290, 401-404.	13.7	241

#	Article	IF	CITATIONS
91	Elevation and the Morphology, Flight Energetics, and Foraging Ecology of Tropical Hummingbirds. American Naturalist, 1979, 113, 481-497.	1.0	119
92	Community Organization Among Neotropical Nectar-Feeding Birds. American Zoologist, 1978, 18, 779-795.	0.7	357
93	Organization of Contiguous Communities of Amphibians and Reptiles in Thailand. Ecological Monographs, 1977, 47, 229-253.	2.4	192
94	Predictability, Constancy, and Contingency of Periodic Phenomena. Ecology, 1974, 55, 1148-1153.	1.5	496
95	Competition for the Nectar of Centropogon valerii by the Hummingbird Colibri thalassinus and the Flower-Piercer Diglossa plumbea, and Its Evolutionary Implications. Condor, 1974, 76, 447.	0.7	48
96	Competition and Coexistence in a Simple Tropical Community. American Naturalist, 1973, 107, 737-760.	1.0	141
97	Suffering Legions?. Science, 1972, 177, 210-210.	6.0	1
98	On the Measurement of Niche Breadth and Overlap. Ecology, 1971, 52, 567-576.	1.5	1,144