Thomas B Kepler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3057852/publications.pdf

Version: 2024-02-01

		19657	22832
148	14,211	61	112
papers	citations	h-index	g-index
155	155	155	13892
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Development of Neutralization Breadth against Diverse HIVâ€1 by Increasing Ab–Ag Interface on V2. Advanced Science, 2022, , 2200063.	11.2	3
2	Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth. Science, $2021,371,.$	12.6	49
3	Gain-Scanning for Protein Microarray Assays. Journal of Proteome Research, 2020, 19, 2664-2675.	3.7	1
4	Boosting with AIDSVAX B/E Enhances Env Constant Region 1 and 2 Antibody-Dependent Cellular Cytotoxicity Breadth and Potency. Journal of Virology, 2020, 94, .	3.4	19
5	Egyptian Rousette IFN-ï‰ Subtypes Elicit Distinct Antiviral Effects and Transcriptional Responses in Conspecific Cells. Frontiers in Immunology, 2020, 11, 435.	4.8	15
6	Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancestor of CH235 lineage CD4bs broadly neutralizing antibodies. PLoS Pathogens, 2019, 15, e1008026.	4.7	56
7	Isolation and Structure of an Antibody that Fully Neutralizes Isolate SIVmac239 Reveals Functional Similarity of SIV and HIV Glycan Shields. Immunity, 2019, 51, 724-734.e4.	14.3	13
8	Antibodies to a Conserved Influenza Head Interface Epitope Protect by an IgG Subtype-Dependent Mechanism. Cell, 2019, 177, 1124-1135.e16.	28.9	141
9	The Egyptian Rousette Genome Reveals Unexpected Features of Bat Antiviral Immunity. Cell, 2018, 173, 1098-1110.e18.	28.9	220
10	Memory B Cells that Cross-React with Group 1 and Group 2 Influenza A Viruses Are Abundant in Adult Human Repertoires. Immunity, 2018, 48, 174-184.e9.	14.3	124
11	Inference of the HIV-1 VRC01 Antibody Lineage Unmutated Common Ancestor Reveals Alternative Pathways to Overcome a Key Glycan Barrier. Immunity, 2018, 49, 1162-1174.e8.	14.3	61
12	Intra-seasonal antibody repertoire analysis of a subject immunized with an MF59®-adjuvanted pandemic 2009 H1N1 vaccine. Vaccine, 2018, 36, 5325-5332.	3.8	4
13	Functional Relevance of Improbable Antibody Mutations for HIV Broadly Neutralizing Antibody Development. Cell Host and Microbe, 2018, 23, 759-765.e6.	11.0	98
14	Genetic and structural analyses of affinity maturation in the humoral response to <scp>HIV</scp> â€1. Immunological Reviews, 2017, 275, 129-144.	6.0	17
15	Potent and broad HIV-neutralizing antibodies in memory B cells and plasma. Science Immunology, 2017, 2, .	11.9	119
16	Vaccine Elicitation of High Mannose-Dependent Neutralizing Antibodies against the V3-Glycan Broadly Neutralizing Epitope in Nonhuman Primates. Cell Reports, 2017, 18, 2175-2188.	6.4	69
17	Virus-like Particles Identify an HIV V1V2 Apex-Binding Neutralizing Antibody that Lacks a Protruding Loop. Immunity, 2017, 46, 777-791.e10.	14.3	81
18	Pentavalent HIV-1 vaccine protects against simian-human immunodeficiency virus challenge. Nature Communications, 2017, 8, 15711.	12.8	137

#	Article	lF	Citations
19	Unconventional Interrogation Yields HIV's Escape Plan. Cell Host and Microbe, 2017, 21, 659-660.	11.0	1
20	Staged induction of HIV-1 glycan–dependent broadly neutralizing antibodies. Science Translational Medicine, 2017, 9, .	12.4	212
21	Mimicry of an HIV broadly neutralizing antibody epitope with a synthetic glycopeptide. Science Translational Medicine, 2017, 9, .	12.4	81
22	Sequence intrinsic somatic mutation mechanisms contribute to affinity maturation of VRC01-class HIV-1 broadly neutralizing antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8614-8619.	7.1	42
23	HIV DNA-Adenovirus Multiclade Envelope Vaccine Induces gp41 Antibody Immunodominance in Rhesus Macaques. Journal of Virology, 2017, 91, .	3.4	20
24	Structure and Diversity of the Rhesus Macaque Immunoglobulin Loci through Multiple De Novo Genome Assemblies. Frontiers in Immunology, 2017, 8, 1407.	4.8	66
25	Reproducibility and Reuse of Adaptive Immune Receptor Repertoire Data. Frontiers in Immunology, 2017, 8, 1418.	4.8	102
26	Initiation of HIV neutralizing B cell lineages with sequential envelope immunizations. Nature Communications, 2017, 8, 1732.	12.8	76
27	Boosting of HIV envelope CD4 binding site antibodies with long variable heavy third complementarity determining region in the randomized double blind RV305 HIV-1 vaccine trial. PLoS Pathogens, 2017, 13, e1006182.	4.7	38
28	Complex Antigens Drive Permissive Clonal Selection in Germinal Centers. Immunity, 2016, 44, 542-552.	14.3	278
29	HIV-1 Envelope Mimicry of Host Enzyme Kynureninase Does Not Disrupt Tryptophan Metabolism. Journal of Immunology, 2016, 197, 4663-4673.	0.8	6
30	Initiation of immune tolerance–controlled HIV gp41 neutralizing B cell lineages. Science Translational Medicine, 2016, 8, 336ra62.	12.4	86
31	Influenza immunization elicits antibodies specific for an egg-adapted vaccine strain. Nature Medicine, 2016, 22, 1465-1469.	30.7	104
32	Amino Acid Changes in the HIV-1 gp41 Membrane Proximal Region Control Virus Neutralization Sensitivity. EBioMedicine, 2016, 12, 196-207.	6.1	34
33	Th17 cytokines differentiate obesity from obesityâ€essociated type 2 diabetes and promote <scp>TNF</scp> α production. Obesity, 2016, 24, 102-112.	3.0	96
34	Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody. Cell, 2016, 165, 449-463.	28.9	305
35	Combined HIV-1 Envelope Systemic and Mucosal Immunization of Lactating Rhesus Monkeys Induces a Robust Immunoglobulin A Isotype B Cell Response in Breast Milk. Journal of Virology, 2016, 90, 4951-4965.	3.4	23
36	Structural Constraints of Vaccine-Induced Tier-2 Autologous HIV Neutralizing Antibodies Targeting the Receptor-Binding Site. Cell Reports, 2016, 14, 43-54.	6.4	45

#	Article	IF	CITATIONS
37	Immunogenic Stimulus for Germline Precursors of Antibodies that Engage the Influenza Hemagglutinin Receptor-Binding Site. Cell Reports, 2015, 13, 2842-2850.	6.4	67
38	Diversion of HIV-1 vaccine–induced immunity by gp41-microbiota cross-reactive antibodies. Science, 2015, 349, aab1253.	12.6	191
39	Analysis of immunoglobulin transcripts and hypermutation following SHIVAD8 infection and protein-plus-adjuvant immunization. Nature Communications, 2015, 6, 6565.	12.8	77
40	Viral Receptor-Binding Site Antibodies with Diverse Germline Origins. Cell, 2015, 161, 1026-1034.	28.9	151
41	Structural analysis of the unmutated ancestor of the HIV-1 envelope V2 region antibody CH58 isolated from an RV144 vaccine efficacy trial vaccinee. EBioMedicine, 2015, 2, 713-722.	6.1	13
42	Sequence-Intrinsic Mechanisms that Target AID Mutational Outcomes on Antibody Genes. Cell, 2015, 163, 1124-1137.	28.9	136
43	Key mutations stabilize antigenâ€binding conformation during affinity maturation of a broadly neutralizing influenza antibody lineage. Proteins: Structure, Function and Bioinformatics, 2015, 83, 771-780.	2.6	34
44	Bayesian Estimation of the Active Concentration and Affinity Constants Using Surface Plasmon Resonance Technology. PLoS ONE, 2015, 10, e0130812.	2.5	3
45	Reconstructing a B-Cell Clonal Lineage. II. Mutation, Selection, and Affinity Maturation. Frontiers in Immunology, 2014, 5, 170.	4.8	104
46	Affinity maturation in an HIV broadly neutralizing B-cell lineage through reorientation of variable domains. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10275-10280.	7.1	73
47	Antibody Light-Chain-Restricted Recognition of the Site of Immune Pressure in the RV144 HIV-1 Vaccine Trial Is Phylogenetically Conserved. Immunity, 2014, 41, 909-918.	14.3	65
48	Immunoglobulin Gene Insertions and Deletions in the Affinity Maturation of HIV-1 Broadly Reactive Neutralizing Antibodies. Cell Host and Microbe, 2014, 16, 304-313.	11.0	137
49	HIV-1 Envelope gp41 Antibodies Can Originate from Terminal lleum B Cells that Share Cross-Reactivity with Commensal Bacteria. Cell Host and Microbe, 2014, 16, 215-226.	11.0	105
50	Cooperation of B Cell Lineages in Induction of HIV-1-Broadly Neutralizing Antibodies. Cell, 2014, 158, 481-491.	28.9	266
51	Surface plasmon resonance measurements of plasma antibody avidity during primary and secondary responses to anthrax protective antigen. Journal of Immunological Methods, 2014, 404, 1-12.	1.4	35
52	High-throughput identification and dendritic cell-based functional validation of MHC class I-restricted Mycobacterium tuberculosis epitopes. Scientific Reports, 2014, 4, 4632.	3.3	7
53	An autoreactive antibody from an SLE/HIV-1 individual broadly neutralizes HIV-1. Journal of Clinical Investigation, 2014, 124, 1835-1843.	8.2	93
54	Quantification of total T-cell receptor diversity by flow cytometry and spectratyping. BMC Immunology, 2013, 14, 35.	2.2	21

#	Article	IF	CITATIONS
55	Identification of autoantigens recognized by the 2F5 and 4E10 broadly neutralizing HIV-1 antibodies. Journal of Experimental Medicine, 2013, 210, 241-256.	8.5	171
56	A Model for Migratory B Cell Oscillations from Receptor Down-Regulation Induced by External Chemokine Fields. Bulletin of Mathematical Biology, 2013, 75, 185-205.	1.9	14
57	Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature, 2013, 496, 469-476.	27.8	961
58	Vaccine Induction of Antibodies against a Structurally Heterogeneous Site of Immune Pressure within HIV-1 Envelope Protein Variable Regions 1 and 2. Immunity, 2013, 38, 176-186.	14.3	374
59	Recognition of synthetic glycopeptides by HIV-1 broadly neutralizing antibodies and their unmutated ancestors. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18214-18219.	7.1	73
60	Preconfiguration of the antigen-binding site during affinity maturation of a broadly neutralizing influenza virus antibody. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 264-269.	7.1	227
61	Reconstructing a B-cell clonal lineage. I. Statistical inference of unobserved ancestors. F1000Research, 2013, 2, 103.	1.6	150
62	Bayesian Spatio-Dynamic Modeling in Cell Motility Studies: Learning Nonlinear Taxic Fields Guiding the Immune Response. Journal of the American Statistical Association, 2012, 107, 855-865.	3.1	7
63	B-cell–lineage immunogen design in vaccine development with HIV-1 as a case study. Nature Biotechnology, 2012, 30, 423-433.	17.5	432
64	Two Distinct Broadly Neutralizing Antibody Specificities of Different Clonal Lineages in a Single HIV-1-Infected Donor: Implications for Vaccine Design. Journal of Virology, 2012, 86, 4688-4692.	3.4	159
65	Mixtures of Gaussian wells: Theory, computation, and application. Computational Statistics and Data Analysis, 2012, 56, 3809-3820.	1.2	3
66	Differential Reactivity of Germ Line Allelic Variants of a Broadly Neutralizing HIV-1 Antibody to a gp41 Fusion Intermediate Conformation. Journal of Virology, 2011, 85, 11725-11731.	3.4	56
67	Analysis of a Clonal Lineage of HIV-1 Envelope V2/V3 Conformational Epitope-Specific Broadly Neutralizing Antibodies and Their Inferred Unmutated Common Ancestors. Journal of Virology, 2011, 85, 9998-10009.	3.4	393
68	Initial antibodies binding to HIV-1 gp41 in acutely infected subjects are polyreactive and highly mutated. Journal of Experimental Medicine, 2011, 208, 2237-2249.	8.5	198
69	H3N2 Influenza Infection Elicits More Cross-Reactive and Less Clonally Expanded Anti-Hemagglutinin Antibodies Than Influenza Vaccination. PLoS ONE, 2011, 6, e25797.	2.5	158
70	Secretion of MIP- $1\hat{l}^2$ and MIP- $1\hat{l}^2$ by CD8+ T-lymphocytes correlates with HIV-1 inhibition independent of coreceptor usage. Cellular Immunology, 2011, 266, 154-164.	3.0	28
71	Paradoxical suppression of poly-specific broadly neutralizing antibodies in the presence of strain-specific neutralizing antibodies following HIV infection. Journal of Theoretical Biology, 2011, 277, 55-66.	1.7	13
72	Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14216-14221.	7.1	402

#	Article	lF	Citations
73	A Bayesian approach for estimating calibration curves and unknown concentrations in immunoassays. Bioinformatics, 2011, 27, 707-712.	4.1	14
74	Envelope Deglycosylation Enhances Antigenicity of HIV-1 gp41 Epitopes for Both Broad Neutralizing Antibodies and Their Unmutated Ancestor Antibodies. PLoS Pathogens, 2011, 7, e1002200.	4.7	82
75	Isolation of a Human Anti-HIV gp41 Membrane Proximal Region Neutralizing Antibody by Antigen-Specific Single B Cell Sorting. PLoS ONE, 2011, 6, e23532.	2.5	137
76	Patient Socioeconomic Status Is an Independent Predictor of Operative Mortality. Annals of Surgery, 2010, 252, 552-558.	4.2	97
77	Chiropteran types I and II interferon genes inferred from genome sequencing traces by a statistical gene-family assembler. BMC Genomics, 2010, 11, 444.	2.8	43
78	The T helper type 2 response to cysteine proteases requires dendritic cell–basophil cooperation via ROS-mediated signaling. Nature Immunology, 2010, 11, 608-617.	14.5	287
79	A two-tiered model for simulating the ecological and evolutionary dynamics of rapidly evolving viruses, with an application to influenza. Journal of the Royal Society Interface, 2010, 7, 1257-1274.	3.4	54
80	Selective and site-specific mobilization of dermal dendritic cells and Langerhans cells by Th1- and Th2-polarizing adjuvants. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8334-8339.	7.1	70
81	Toxin-Coupled MHC Class I Tetramers Can Specifically Ablate Autoreactive CD8+ T Cells and Delay Diabetes in Nonobese Diabetic Mice. Journal of Immunology, 2010, 184, 4196-4204.	0.8	55
82	SoDA2: a Hidden Markov Model approach for identification of immunoglobulin rearrangements. Bioinformatics, 2010, 26, 867-872.	4.1	65
83	Metastasizing patent claims on BRCA1. Genomics, 2010, 95, 312-314.	2.9	16
84	First Qualification Study of Serum Biomarkers as Indicators of Total Body Burden of Osteoarthritis. PLoS ONE, 2010, 5, e9739.	2.5	68
85	Spatial mixture modelling for unobserved point processes: examples in immunofluorescence histology. Bayesian Analysis, 2009, 4, 297-316.	3.0	25
86	The Dynamics of T-Cell Receptor Repertoire Diversity Following Thymus Transplantation for DiGeorge Anomaly. PLoS Computational Biology, 2009, 5, e1000396.	3.2	22
87	\hat{l}^2 Cell-Specific CD4+ T Cell Clonotypes in Peripheral Blood and the Pancreatic Islets Are Distinct. Journal of Immunology, 2009, 183, 7585-7591.	0.8	29
88	High-throughput isolation of immunoglobulin genes from single human B cells and expression as monoclonal antibodies. Journal of Virological Methods, 2009, 158, 171-179.	2.1	235
89	Genetic correlates of autoreactivity and autoreactive potential in human Ig heavy chains. Immunome Research, 2009, 5, 1.	0.1	7
90	Large-scale analysis of human heavy chain $V(D)J$ recombination patterns. Immunome Research, 2008, 4, 3.	0.1	41

#	Article	IF	Citations
91	Flow: Statistics, visualization and informatics for flow cytometry. Source Code for Biology and Medicine, 2008, 3, 10.	1.7	10
92	The Multiscale Systems Immunology project: software for cell-based immunological simulation. Source Code for Biology and Medicine, 2008, 3, 6.	1.7	20
93	Statistical mixture modeling for cell subtype identification in flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2008, 73A, 693-701.	1.5	84
94	Rescue of cytotoxic function in the CD8î± knockout mouse by removal of MHC class II. European Journal of Immunology, 2008, 38, 1511-1521.	2.9	7
95	Improving peptide-MHC class I binding prediction for unbalanced datasets. BMC Bioinformatics, 2008, 9, 385.	2.6	8
96	The 185/333 Gene Family Is a Rapidly Diversifying Host-Defense Gene Cluster in the Purple Sea Urchin Strongylocentrotus purpuratus. Journal of Molecular Biology, 2008, 379, 912-928.	4.2	36
97	Comparison of multiple vaccine vectors in a single heterologous prime-boost trial. Vaccine, 2008, 26, 6108-6118.	3.8	45
98	An Information-Theoretic Method for the Treatment of Plural Ancestry in Phylogenetics. Molecular Biology and Evolution, 2008, 25, 1199-1208.	8.9	2
99	Review of 54 patients with complete DiGeorge anomaly enrolled in protocols for thymus transplantation: outcome of 44 consecutive transplants. Blood, 2007, 109, 4539-4547.	1.4	195
100	Amino acid biophysical properties in the statistical prediction of peptide-MHC class I binding. Immunome Research, 2007, 3, 9.	0.1	9
101	Spatiotemporal programming of a simple inflammatory process. Immunological Reviews, 2007, 216, 153-163.	6.0	16
102	Similar CD19 Dysregulation in Two Autoantibody-Associated Autoimmune Diseases Suggests a Shared Mechanism of B-Cell Tolerance Loss. Journal of Clinical Immunology, 2007, 27, 53-68.	3.8	61
103	Longitudinal Analysis of T-Cell Receptor Variable Î ² Chain Repertoire in Patients with Acute Graft-versus-Host Disease after Allogeneic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2006, 12, 335-345.	2.0	29
104	Open Source Research â€" the Power of Us. Australian Journal of Chemistry, 2006, 59, 291.	0.9	21
105	Classification of osteoarthritis biomarkers: a proposed approach. Osteoarthritis and Cartilage, 2006, 14, 723-727.	1.3	330
106	Neonate-primed CD8+ memory cells rival adult-primed memory cells in antigen-driven expansion and anti-viral protection. International Immunology, 2006, 18, 249-257.	4.0	19
107	SoDA: implementation of a 3D alignment algorithm for inference of antigen receptor recombinations. Bioinformatics, 2006, 22, 438-444.	4.1	117
108	Microsimulation of Inducible Reorganization in Immunity. , 2006, , 437-450.		3

#	Article	IF	CITATIONS
109	HLA and HIV Infection Progression: Application of the Minimum Description Length Principle to Statistical Genetics. Lecture Notes in Computer Science, 2006, , 1-12.	1.3	O
110	Identifying differential expression in multiple SAGE libraries: an overdispersed log-linear model approach. BMC Bioinformatics, 2005, 6, 165.	2.6	65
111	Pathway level analysis of gene expression using singular value decomposition. BMC Bioinformatics, 2005, 6, 225.	2.6	332
112	Statistical analysis of antigen receptor spectratype data. Bioinformatics, 2005, 21, 3394-3400.	4.1	26
113	SpA: web-accessible spectratype analysis: data management, statistical analysis and visualization. Bioinformatics, 2005, 21, 3697-3699.	4.1	14
114	Unselected Mutations in the Human Immunodeficiency Virus Type 1 Genome Are Mostly Nonsynonymous and Often Deleterious. Journal of Virology, 2004, 78, 2426-2433.	3 . 4	66
115	Invertebrate immune systems – not homogeneous, not simple, not well understood. Immunological Reviews, 2004, 198, 10-24.	6.0	589
116	Diversification of Ig Superfamily Genes in an Invertebrate. Science, 2004, 305, 251-254.	12.6	366
117	Measurement of Cell Migration on Surface-Bound Fibronectin Gradients. Langmuir, 2004, 20, 8279-8286.	3 . 5	142
118	Terminal deoxynucleotidyl transferases from elasmobranchs reveal structural conservation within vertebrates. Immunogenetics, 2003, 55, 594-604.	2.4	16
119			
	Advantage of rare HLA supertype in HIV disease progression. Nature Medicine, 2003, 9, 928-935.	30.7	311
120	Advantage of rare HLA supertype in HIV disease progression. Nature Medicine, 2003, 9, 928-935. Prospective Estimation of Recombination Signal Efficiency and Identification of Functional Cryptic Signals in the Genome by Statistical Modeling. Journal of Experimental Medicine, 2003, 197, 207-220.	30.7	311 59
120	Prospective Estimation of Recombination Signal Efficiency and Identification of Functional Cryptic		
	Prospective Estimation of Recombination Signal Efficiency and Identification of Functional Cryptic Signals in the Genome by Statistical Modeling. Journal of Experimental Medicine, 2003, 197, 207-220. Identification and utilization of arbitrary correlations in models of recombination signal sequences.	8.5	59
121	Prospective Estimation of Recombination Signal Efficiency and Identification of Functional Cryptic Signals in the Genome by Statistical Modeling. Journal of Experimental Medicine, 2003, 197, 207-220. Identification and utilization of arbitrary correlations in models of recombination signal sequences. Genome Biology, 2002, 3, research0072.1. Normalization and analysis of DNA microarray data by self-consistency and local regression. Genome	9.6	59 54
121	Prospective Estimation of Recombination Signal Efficiency and Identification of Functional Cryptic Signals in the Genome by Statistical Modeling. Journal of Experimental Medicine, 2003, 197, 207-220. Identification and utilization of arbitrary correlations in models of recombination signal sequences. Genome Biology, 2002, 3, research0072.1. Normalization and analysis of DNA microarray data by self-consistency and local regression. Genome Biology, 2002, 3, research0037.1. Belowground factors mediating changes in methane consumption in a forest soil under elevated CO2.	9.6 9.6	59 54 99
121 122 123	Prospective Estimation of Recombination Signal Efficiency and Identification of Functional Cryptic Signals in the Genome by Statistical Modeling. Journal of Experimental Medicine, 2003, 197, 207-220. Identification and utilization of arbitrary correlations in models of recombination signal sequences. Genome Biology, 2002, 3, research0072.1. Normalization and analysis of DNA microarray data by self-consistency and local regression. Genome Biology, 2002, 3, research0037.1. Belowground factors mediating changes in methane consumption in a forest soil under elevated CO2. Global Biogeochemical Cycles, 2002, 16, 23-1-23-14. Improved Inference of Mutation Rates: I. An Integral Representation for the Luria–Delbrýck	9.6 9.6 4.9	59 54 99 41

#	Article	IF	Citations
127	Waiting times to appearance and dominance of advantageous mutants: estimation based on the likelihood. Mathematical Biosciences, 2001, 170, 59-77.	1.9	2
128	A linear two-state model with complex dynamics. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 280, 204-208.	2.1	2
129	The Targeting of Somatic Hypermutation Closely Resembles That of Meiotic Mutation. Journal of Immunology, 2001, 166, 892-899.	0.8	29
130	Morphologic Analysis Correlates with Gene Expression Changes in Cultured F344 Rat Mesothelial Cells. Toxicology and Applied Pharmacology, 2000, 169, 205-221.	2.8	66
131	The Nucleotide-Replacement Spectrum Under Somatic Hypermutation Exhibits Microsequence Dependence That Is Strand-Symmetric and Distinct from That Under Germline Mutation. Journal of Immunology, 2000, 164, 1971-1976.	0.8	43
132	Genetic Plasticity of V Genes Under Somatic Hypermutation: Statistical Analyses Using a New Resampling-Based Methodology. Genome Research, 1999, 9, 1294-1304.	5.5	17
133	Enhanced Evolvability in Immunoglobulin V Genes Under Somatic Hypermutation. Journal of Molecular Evolution, 1999, 49, 23-26.	1.8	30
134	Human Immunodeficiency Virus Type 1-Specific Cytotoxic T Lymphocyte Activity Is Inversely Correlated with HIV Type 1 Viral Load in HIV Type 1-Infected Long-Term Survivors. AIDS Research and Human Retroviruses, 1999, 15, 1219-1228.	1.1	120
135	Density-dependent Prenatal Androgen Exposure as an Endogenous Mechanism for the Generation of Cycles in Small Mammal Populations. Journal of Theoretical Biology, 1998, 190, 93-106.	1.7	9
136	Predicted and inferred waiting times for key mutations in the germinal centre reaction: Evidence for stochasticity in selection. Immunology and Cell Biology, 1998, 76, 373-381.	2.3	54
137	Drug concentration heterogeneity facilitates the evolution of drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 11514-11519.	7.1	240
138	The Distribution of Variation in Regulatory Gene Segments, as Present in MHC Class II Promoters. Genome Research, 1998, 8, 124-134.	5.5	43
139	Modeling and optimization of populations subject to time-dependent mutation Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 8219-8223.	7.1	59
140	Hypermutation in T cells questioned. Nature, 1995, 375, 286-286.	27.8	3
141	Somatic Hypermutation in B Cells: An Optimal Control Treatment. Journal of Theoretical Biology, 1993, 164, 37-64.	1.7	141
142	Cyclic re-entry of germinal center B cells and the efficiency of affinity maturation. Trends in Immunology, 1993, 14, 412-415.	7.5	258
143	Spike initiation and propagation on axons with slow inward currents. Biological Cybernetics, 1993, 68, 209-214.	1.3	16
144	Physiological Insights from Cellular and Network Models of the Stomatogastric Nervous System of Lobsters and Crabs. American Zoologist, 1993, 33, 29-39.	0.7	15

#	ARTICLE	IF	CITATIONS
145	Reduction of conductance-based neuron models. Biological Cybernetics, 1992, 66, 381-387.	1.3	128
146	Geometric phases in dissipative systems. Chaos, 1991, 1, 455-461.	2.5	10
147	Geometric phase shifts in chemical oscillators. Nature, 1991, 349, 506-508.	27.8	21
148	Geometric phase shifts under adiabatic parameter changes in classical dissipative systems. Physical Review Letters, 1991, 66, 847-849.	7.8	32